Expression of dioxin-related transactivating factors and target genes in human eutopic endometrial and endometriotic tissues

Serdar E. Bulun, Khaled M. Zeitoun, Gokhan Kilic

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

OBJECTIVE: Although an association between dioxin exposure and endometriosis has been proposed, the effects of this environmental toxin on human endometriosis are not known. To understand the potential underlying molecular mechanisms we studied the expressions of cytochrome P-450 genes (CYP1A1, CYP1A2, and CYP1B1), which are induced by dioxin, and the expressions of cytosolic receptor for dioxin, aryl hydrocarbon receptor, and its nuclear translocator, aryl hydrocarbon receptor nuclear translocator protein, in endometriotic and eutopic endometrial tissues. STUDY DESIGN: Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined by a quantitative reverse transcriptase-polymerase chain reaction and Southern blot assay in total ribonucleic acid samples from endometriotic and eutopic endometrial tissues. Eutopic endometrial tissue samples (n = 33) and endometriotic tissue samples (n = 10) were obtained at the time of uterine curettage and laparoscopy from disease-free women and from patients with endometriosis. Portions of these eutopic endometrial and endometriotic tissues were obtained simultaneously from the same patients (n = 8 pairs of samples). Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined in endometrial and endometriotic tissues during follicular and luteal phases of the cycle and in cultured endometriotic stromal cells treated with forskolin, phorbol diacetate, medroxyprogesterone acetate, and serum. RESULTS: Transcripts of dioxin receptor, its nuclear translocator, and two dioxin-induced target genes (CYP1A2and CYP1B1) were demonstrated during follicular and luteal phases of the cycle in both eutopic endometrial tissues and tissues affected by pelvic endometriosis, with no readily detectable differences between these tissues. On the other hand, levels of transcripts of another dioxin-induced gene, CYP1A1, were found to be strikingly higher in endometriotic tissues than in the eutopic endometrium. Mean levels in endometriotic tissues were 8.7 times those found in eutopic endometrium. Various hormonal treatments of endometriotic stromal cells did not significantly alter these levels. CONCLUSION: We demonstrated for the first time the expression of dioxin-related transcription factors aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein and target genes CYP1A1, CYP1A2, and CYP1B1 in endometriotic tissues and stromal cells. Strikingly elevated CYP1A1 transcripts in endometriosis may give rise to significantly increased P-4501A1 enzyme activity and thus promote the development and growth of endometriosis by either activating procarcinogens or inducing the formation of catechol estrogens or both. In fact, the proposed link between dioxin exposure and endometriosis may be explained in part by the up-regulation of the CYP1A1 gene expression in endometriotic tissues.

Original languageEnglish (US)
Pages (from-to)767-775
Number of pages9
JournalAmerican Journal of Obstetrics and Gynecology
Volume182
Issue number4
StatePublished - 2000
Externally publishedYes

Fingerprint

Dioxins
Cytochrome P-450 CYP1A2
Aryl Hydrocarbon Receptor Nuclear Translocator
Endometriosis
Genes
Aryl Hydrocarbon Receptors
Nuclear Proteins
Stromal Cells
Follicular Phase
Luteal Phase
Endometrium
Catechol Estrogens
Medroxyprogesterone Acetate
Curettage
Colforsin
Southern Blotting
Reverse Transcriptase Polymerase Chain Reaction
Growth and Development
Laparoscopy
Transcription Factors

Keywords

  • Ahr
  • Arnt
  • CYP1A1
  • CYP1A2
  • CYP1B1
  • Dioxin
  • Endometrium
  • TCDD

ASJC Scopus subject areas

  • Medicine(all)
  • Obstetrics and Gynecology

Cite this

Expression of dioxin-related transactivating factors and target genes in human eutopic endometrial and endometriotic tissues. / Bulun, Serdar E.; Zeitoun, Khaled M.; Kilic, Gokhan.

In: American Journal of Obstetrics and Gynecology, Vol. 182, No. 4, 2000, p. 767-775.

Research output: Contribution to journalArticle

@article{faa66e824bca429d830aec157c30ea5f,
title = "Expression of dioxin-related transactivating factors and target genes in human eutopic endometrial and endometriotic tissues",
abstract = "OBJECTIVE: Although an association between dioxin exposure and endometriosis has been proposed, the effects of this environmental toxin on human endometriosis are not known. To understand the potential underlying molecular mechanisms we studied the expressions of cytochrome P-450 genes (CYP1A1, CYP1A2, and CYP1B1), which are induced by dioxin, and the expressions of cytosolic receptor for dioxin, aryl hydrocarbon receptor, and its nuclear translocator, aryl hydrocarbon receptor nuclear translocator protein, in endometriotic and eutopic endometrial tissues. STUDY DESIGN: Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined by a quantitative reverse transcriptase-polymerase chain reaction and Southern blot assay in total ribonucleic acid samples from endometriotic and eutopic endometrial tissues. Eutopic endometrial tissue samples (n = 33) and endometriotic tissue samples (n = 10) were obtained at the time of uterine curettage and laparoscopy from disease-free women and from patients with endometriosis. Portions of these eutopic endometrial and endometriotic tissues were obtained simultaneously from the same patients (n = 8 pairs of samples). Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined in endometrial and endometriotic tissues during follicular and luteal phases of the cycle and in cultured endometriotic stromal cells treated with forskolin, phorbol diacetate, medroxyprogesterone acetate, and serum. RESULTS: Transcripts of dioxin receptor, its nuclear translocator, and two dioxin-induced target genes (CYP1A2and CYP1B1) were demonstrated during follicular and luteal phases of the cycle in both eutopic endometrial tissues and tissues affected by pelvic endometriosis, with no readily detectable differences between these tissues. On the other hand, levels of transcripts of another dioxin-induced gene, CYP1A1, were found to be strikingly higher in endometriotic tissues than in the eutopic endometrium. Mean levels in endometriotic tissues were 8.7 times those found in eutopic endometrium. Various hormonal treatments of endometriotic stromal cells did not significantly alter these levels. CONCLUSION: We demonstrated for the first time the expression of dioxin-related transcription factors aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein and target genes CYP1A1, CYP1A2, and CYP1B1 in endometriotic tissues and stromal cells. Strikingly elevated CYP1A1 transcripts in endometriosis may give rise to significantly increased P-4501A1 enzyme activity and thus promote the development and growth of endometriosis by either activating procarcinogens or inducing the formation of catechol estrogens or both. In fact, the proposed link between dioxin exposure and endometriosis may be explained in part by the up-regulation of the CYP1A1 gene expression in endometriotic tissues.",
keywords = "Ahr, Arnt, CYP1A1, CYP1A2, CYP1B1, Dioxin, Endometrium, TCDD",
author = "Bulun, {Serdar E.} and Zeitoun, {Khaled M.} and Gokhan Kilic",
year = "2000",
language = "English (US)",
volume = "182",
pages = "767--775",
journal = "American Journal of Obstetrics and Gynecology",
issn = "0002-9378",
publisher = "Mosby Inc.",
number = "4",

}

TY - JOUR

T1 - Expression of dioxin-related transactivating factors and target genes in human eutopic endometrial and endometriotic tissues

AU - Bulun, Serdar E.

AU - Zeitoun, Khaled M.

AU - Kilic, Gokhan

PY - 2000

Y1 - 2000

N2 - OBJECTIVE: Although an association between dioxin exposure and endometriosis has been proposed, the effects of this environmental toxin on human endometriosis are not known. To understand the potential underlying molecular mechanisms we studied the expressions of cytochrome P-450 genes (CYP1A1, CYP1A2, and CYP1B1), which are induced by dioxin, and the expressions of cytosolic receptor for dioxin, aryl hydrocarbon receptor, and its nuclear translocator, aryl hydrocarbon receptor nuclear translocator protein, in endometriotic and eutopic endometrial tissues. STUDY DESIGN: Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined by a quantitative reverse transcriptase-polymerase chain reaction and Southern blot assay in total ribonucleic acid samples from endometriotic and eutopic endometrial tissues. Eutopic endometrial tissue samples (n = 33) and endometriotic tissue samples (n = 10) were obtained at the time of uterine curettage and laparoscopy from disease-free women and from patients with endometriosis. Portions of these eutopic endometrial and endometriotic tissues were obtained simultaneously from the same patients (n = 8 pairs of samples). Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined in endometrial and endometriotic tissues during follicular and luteal phases of the cycle and in cultured endometriotic stromal cells treated with forskolin, phorbol diacetate, medroxyprogesterone acetate, and serum. RESULTS: Transcripts of dioxin receptor, its nuclear translocator, and two dioxin-induced target genes (CYP1A2and CYP1B1) were demonstrated during follicular and luteal phases of the cycle in both eutopic endometrial tissues and tissues affected by pelvic endometriosis, with no readily detectable differences between these tissues. On the other hand, levels of transcripts of another dioxin-induced gene, CYP1A1, were found to be strikingly higher in endometriotic tissues than in the eutopic endometrium. Mean levels in endometriotic tissues were 8.7 times those found in eutopic endometrium. Various hormonal treatments of endometriotic stromal cells did not significantly alter these levels. CONCLUSION: We demonstrated for the first time the expression of dioxin-related transcription factors aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein and target genes CYP1A1, CYP1A2, and CYP1B1 in endometriotic tissues and stromal cells. Strikingly elevated CYP1A1 transcripts in endometriosis may give rise to significantly increased P-4501A1 enzyme activity and thus promote the development and growth of endometriosis by either activating procarcinogens or inducing the formation of catechol estrogens or both. In fact, the proposed link between dioxin exposure and endometriosis may be explained in part by the up-regulation of the CYP1A1 gene expression in endometriotic tissues.

AB - OBJECTIVE: Although an association between dioxin exposure and endometriosis has been proposed, the effects of this environmental toxin on human endometriosis are not known. To understand the potential underlying molecular mechanisms we studied the expressions of cytochrome P-450 genes (CYP1A1, CYP1A2, and CYP1B1), which are induced by dioxin, and the expressions of cytosolic receptor for dioxin, aryl hydrocarbon receptor, and its nuclear translocator, aryl hydrocarbon receptor nuclear translocator protein, in endometriotic and eutopic endometrial tissues. STUDY DESIGN: Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined by a quantitative reverse transcriptase-polymerase chain reaction and Southern blot assay in total ribonucleic acid samples from endometriotic and eutopic endometrial tissues. Eutopic endometrial tissue samples (n = 33) and endometriotic tissue samples (n = 10) were obtained at the time of uterine curettage and laparoscopy from disease-free women and from patients with endometriosis. Portions of these eutopic endometrial and endometriotic tissues were obtained simultaneously from the same patients (n = 8 pairs of samples). Levels of transcripts of CYP1A1, CYP1A2, CYP1B1, aryl hydrocarbon receptor, and aryl hydrocarbon receptor nuclear translocator protein were determined in endometrial and endometriotic tissues during follicular and luteal phases of the cycle and in cultured endometriotic stromal cells treated with forskolin, phorbol diacetate, medroxyprogesterone acetate, and serum. RESULTS: Transcripts of dioxin receptor, its nuclear translocator, and two dioxin-induced target genes (CYP1A2and CYP1B1) were demonstrated during follicular and luteal phases of the cycle in both eutopic endometrial tissues and tissues affected by pelvic endometriosis, with no readily detectable differences between these tissues. On the other hand, levels of transcripts of another dioxin-induced gene, CYP1A1, were found to be strikingly higher in endometriotic tissues than in the eutopic endometrium. Mean levels in endometriotic tissues were 8.7 times those found in eutopic endometrium. Various hormonal treatments of endometriotic stromal cells did not significantly alter these levels. CONCLUSION: We demonstrated for the first time the expression of dioxin-related transcription factors aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein and target genes CYP1A1, CYP1A2, and CYP1B1 in endometriotic tissues and stromal cells. Strikingly elevated CYP1A1 transcripts in endometriosis may give rise to significantly increased P-4501A1 enzyme activity and thus promote the development and growth of endometriosis by either activating procarcinogens or inducing the formation of catechol estrogens or both. In fact, the proposed link between dioxin exposure and endometriosis may be explained in part by the up-regulation of the CYP1A1 gene expression in endometriotic tissues.

KW - Ahr

KW - Arnt

KW - CYP1A1

KW - CYP1A2

KW - CYP1B1

KW - Dioxin

KW - Endometrium

KW - TCDD

UR - http://www.scopus.com/inward/record.url?scp=0034007092&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034007092&partnerID=8YFLogxK

M3 - Article

C2 - 10764452

AN - SCOPUS:0034007092

VL - 182

SP - 767

EP - 775

JO - American Journal of Obstetrics and Gynecology

JF - American Journal of Obstetrics and Gynecology

SN - 0002-9378

IS - 4

ER -