Extracellular Regulated Kinase 1/2 Signaling Is a Critical Regulator of Interleukin-1β-Mediated Astrocyte Tissue Inhibitor of Metalloproteinase-1 Expression

Jerel Fields, Irma Cisneros, Kathleen Borgmann, Anuja Ghorpade

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.

Original languageEnglish (US)
Article numbere56891
JournalPLoS One
Volume8
Issue number2
DOIs
StatePublished - Feb 14 2013
Externally publishedYes

Fingerprint

Tissue Inhibitor of Metalloproteinase-1
astrocytes
interleukin-1
metalloproteinases
Interleukin-1
Astrocytes
CCAAT-Enhancer-Binding Proteins
phosphotransferases (kinases)
Phosphotransferases
binding proteins
protein synthesis
Neurology
central nervous system
Central Nervous System
promoter regions
tissues
Human immunodeficiency virus 1
Viruses
HIV-1
Brain

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Extracellular Regulated Kinase 1/2 Signaling Is a Critical Regulator of Interleukin-1β-Mediated Astrocyte Tissue Inhibitor of Metalloproteinase-1 Expression. / Fields, Jerel; Cisneros, Irma; Borgmann, Kathleen; Ghorpade, Anuja.

In: PLoS One, Vol. 8, No. 2, e56891, 14.02.2013.

Research output: Contribution to journalArticle

@article{e71d9cf487a149159452ed8df099a830,
title = "Extracellular Regulated Kinase 1/2 Signaling Is a Critical Regulator of Interleukin-1β-Mediated Astrocyte Tissue Inhibitor of Metalloproteinase-1 Expression",
abstract = "Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.",
author = "Jerel Fields and Irma Cisneros and Kathleen Borgmann and Anuja Ghorpade",
year = "2013",
month = "2",
day = "14",
doi = "10.1371/journal.pone.0056891",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "2",

}

TY - JOUR

T1 - Extracellular Regulated Kinase 1/2 Signaling Is a Critical Regulator of Interleukin-1β-Mediated Astrocyte Tissue Inhibitor of Metalloproteinase-1 Expression

AU - Fields, Jerel

AU - Cisneros, Irma

AU - Borgmann, Kathleen

AU - Ghorpade, Anuja

PY - 2013/2/14

Y1 - 2013/2/14

N2 - Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.

AB - Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.

UR - http://www.scopus.com/inward/record.url?scp=84874005957&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874005957&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0056891

DO - 10.1371/journal.pone.0056891

M3 - Article

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 2

M1 - e56891

ER -