TY - JOUR
T1 - Fatty acid ethyl and methyl ester synthases, and fatty acid anilide synthase in HepG2 and AR42J cells
T2 - Interrelationships and inhibition by tri- o-tolyl phosphate
AU - Kaphalia, Bhupendra S.
AU - Green, Steven M.
AU - Ansari, G. A.S.
N1 - Funding Information:
This work was supported by Grant ES 04815 awarded by National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH) and ‘its contents are solely the responsibility of the authors and not necessarily represent the official views of the NIEHS, NIH.‘ We thank Dr. Takahiro Tsujita, Ehime University, Onsengun, Ehime, Japan for the generous gift of monospecific antibodies of rat adipose tissue FAEES.
PY - 1999/9/1
Y1 - 1999/9/1
N2 - Synthesis of fatty acid ethyl esters (FAEEs), fatty acid methyl esters (FAMEs), and fatty acid anilides (FAAs) in humans and/or experimental animals and in vitro have been reported by us and other investigators. In previous studies, we have demonstrated that fatty acid ethyl ester synthase (FAEES), purified from rat liver microsomes, is structurally and functionally identical to the rat liver microsomal carboxylesterase (pI 6.1) and suggested a role in the conjugation of a variety of xenobiotic alcohols with endogenous fatty acids (B. S. Kaphalia, R. R. Fritz, and G. A. S. Ansari, Chem. Res. Toxicol. 11, 211-218, 1997). However, hepatic FAEES was found to be structurally and functionally different from that of pancreas. Therefore, the present study was undertaken to determine structural and functional interrelationships among the enzyme(s) involved in the synthesis of FAEEs, FAMEs, and FAAs, in HepG2 and AR42J cells using tri-o-tolyl phosphate (TOTP), a specific inhibitor for β-esterases. Synthesis of FAEEs, FAMEs, and FAAs, studied in the HepG2 cells, was found to be dose- and time-dependent following incubation with methanol, ethanol, or aniline, respectively. Approximately 86-90% inhibition of FAEE, FAME, and FAA synthesizing activities was found in HepG2 cells following exposure to 2.5 μM TOTP. Identical profiles of dose- and time-dependent inhibition of FAEE, FAME, and FAA synthesizing activities by TOTP in HepG2 cells suggest that synthesis of FAEEs, FAMEs, and FAAs is catalyzed by the same enzyme(s). However, FAEE, FAME, and FAA synthesizing activities in AR42J cells could not be inhibited by TOTP under similar experimental conditions. A differential pattern of p- nitrophenyl acetate hydrolyzing activity (a measure of esterase activity) similar to that of fatty acid ester/anilide synthesizing activities was observed in the two cell lines. These results are further substantiated by the presence of ~60 kDa (subunit molecular weight) protein in the postnuclear fraction of HepG2 but not in AR42J cells by Western blot analysis using antibodies raised against FAEES, purified from rat liver microsomes or adipose tissue. Therefore, the enzyme responsible for the FAEE, FAME, or FAA synthesizing activities is most probably carboxylesterase in HepG2 cells and is structurally and functionally different than that present in AR42J cells. These studies also indicate the utility of HepG2 and AR42J cell cultures as an alternative to the animal model regarding studies on nonoxidative metabolism of alcohols and amines, in general.
AB - Synthesis of fatty acid ethyl esters (FAEEs), fatty acid methyl esters (FAMEs), and fatty acid anilides (FAAs) in humans and/or experimental animals and in vitro have been reported by us and other investigators. In previous studies, we have demonstrated that fatty acid ethyl ester synthase (FAEES), purified from rat liver microsomes, is structurally and functionally identical to the rat liver microsomal carboxylesterase (pI 6.1) and suggested a role in the conjugation of a variety of xenobiotic alcohols with endogenous fatty acids (B. S. Kaphalia, R. R. Fritz, and G. A. S. Ansari, Chem. Res. Toxicol. 11, 211-218, 1997). However, hepatic FAEES was found to be structurally and functionally different from that of pancreas. Therefore, the present study was undertaken to determine structural and functional interrelationships among the enzyme(s) involved in the synthesis of FAEEs, FAMEs, and FAAs, in HepG2 and AR42J cells using tri-o-tolyl phosphate (TOTP), a specific inhibitor for β-esterases. Synthesis of FAEEs, FAMEs, and FAAs, studied in the HepG2 cells, was found to be dose- and time-dependent following incubation with methanol, ethanol, or aniline, respectively. Approximately 86-90% inhibition of FAEE, FAME, and FAA synthesizing activities was found in HepG2 cells following exposure to 2.5 μM TOTP. Identical profiles of dose- and time-dependent inhibition of FAEE, FAME, and FAA synthesizing activities by TOTP in HepG2 cells suggest that synthesis of FAEEs, FAMEs, and FAAs is catalyzed by the same enzyme(s). However, FAEE, FAME, and FAA synthesizing activities in AR42J cells could not be inhibited by TOTP under similar experimental conditions. A differential pattern of p- nitrophenyl acetate hydrolyzing activity (a measure of esterase activity) similar to that of fatty acid ester/anilide synthesizing activities was observed in the two cell lines. These results are further substantiated by the presence of ~60 kDa (subunit molecular weight) protein in the postnuclear fraction of HepG2 but not in AR42J cells by Western blot analysis using antibodies raised against FAEES, purified from rat liver microsomes or adipose tissue. Therefore, the enzyme responsible for the FAEE, FAME, or FAA synthesizing activities is most probably carboxylesterase in HepG2 cells and is structurally and functionally different than that present in AR42J cells. These studies also indicate the utility of HepG2 and AR42J cell cultures as an alternative to the animal model regarding studies on nonoxidative metabolism of alcohols and amines, in general.
UR - http://www.scopus.com/inward/record.url?scp=0033200380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033200380&partnerID=8YFLogxK
U2 - 10.1006/taap.1999.8724
DO - 10.1006/taap.1999.8724
M3 - Article
C2 - 10495777
AN - SCOPUS:0033200380
SN - 0041-008X
VL - 159
SP - 134
EP - 141
JO - Toxicology and Applied Pharmacology
JF - Toxicology and Applied Pharmacology
IS - 2
ER -