Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation

IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction

Tonyia Eaves-Pyles, K. Murthy, L. Liaudet, L. Virág, G. Ross, F. G. Soriano, Csaba Szabo, A. L. Salzman

Research output: Contribution to journalArticle

222 Citations (Scopus)

Abstract

Gram-negative sepsis is mediated by the actions of proinflammatory genes induced in response to microbes and their products. We report that flagellin, the monomeric subunit of flagella, is a potent proinflammatory species released by Salmonella. Flagellin (1 μg/ml) induces IκBα degradation, NF-κB nuclear translocation, and inducible NO synthase expression in cultured intestinal epithelial cells (IEC). Aflagellic Salmonella mutants do not induce NF-κB activation or NO production by cultured IEC. Antiserum to flagellin blocks NO production in IEC induced by medium conditioned by a variety of motile Gram-negative enteric pathogens (Escherichia coli, Salmonella muenchen, Serratia marcescens, Proteus mirabilis, and Proteus vulgaris). Flagellin, when injected systemically (∼10 μg/mouse), induces systemic inflammation characterized by the systemic expression of a range of proinflammatory cytokines and chemokines and of inducible NO synthase. At higher doses (∼300 μg/mouse), flagellin induces shock, chaeacterized by hypotension, reduced vascular contractility in mice, and death. The effects of flagellin do not diminish in C3H/HeJ LPS-resistant mice, indicating that the Toll-like receptor-4 receptor is not involved in flagellin's actions. In LPS-resistant mice, i.p. injection of S. dublin flagellin or medium conditioned by wild-type S. dublin induces serum IFN-γ and TNF-α, whereas medium conditioned by aflagellic mutants has no effect. Flagellin can be detected in the blood of rats with septic shock induced by live bacteria at approximately 1 μg/ml. We propose that flagellin released by Gram-negative pathogens may contribute to the inflammatory response by an LPS- and Toll-like receptor-4-independent pathway.

Original languageEnglish (US)
Pages (from-to)1248-1260
Number of pages13
JournalJournal of Immunology
Volume166
Issue number2
StatePublished - Jan 15 2001
Externally publishedYes

Fingerprint

Flagellin
Nitric Oxide Synthase
Salmonella
Inflammation
Conditioned Culture Medium
Epithelial Cells
Proteus vulgaris
Proteus mirabilis
Serratia marcescens
Toll-Like Receptor 4
Flagella
Septic Shock
Chemokines
Hypotension
Immune Sera
Shock
Sepsis
Cytokines
Escherichia coli
Bacteria

ASJC Scopus subject areas

  • Immunology

Cite this

@article{b2c5e5f8878b4f3b9e9cfa6d6a838ad8,
title = "Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction",
abstract = "Gram-negative sepsis is mediated by the actions of proinflammatory genes induced in response to microbes and their products. We report that flagellin, the monomeric subunit of flagella, is a potent proinflammatory species released by Salmonella. Flagellin (1 μg/ml) induces IκBα degradation, NF-κB nuclear translocation, and inducible NO synthase expression in cultured intestinal epithelial cells (IEC). Aflagellic Salmonella mutants do not induce NF-κB activation or NO production by cultured IEC. Antiserum to flagellin blocks NO production in IEC induced by medium conditioned by a variety of motile Gram-negative enteric pathogens (Escherichia coli, Salmonella muenchen, Serratia marcescens, Proteus mirabilis, and Proteus vulgaris). Flagellin, when injected systemically (∼10 μg/mouse), induces systemic inflammation characterized by the systemic expression of a range of proinflammatory cytokines and chemokines and of inducible NO synthase. At higher doses (∼300 μg/mouse), flagellin induces shock, chaeacterized by hypotension, reduced vascular contractility in mice, and death. The effects of flagellin do not diminish in C3H/HeJ LPS-resistant mice, indicating that the Toll-like receptor-4 receptor is not involved in flagellin's actions. In LPS-resistant mice, i.p. injection of S. dublin flagellin or medium conditioned by wild-type S. dublin induces serum IFN-γ and TNF-α, whereas medium conditioned by aflagellic mutants has no effect. Flagellin can be detected in the blood of rats with septic shock induced by live bacteria at approximately 1 μg/ml. We propose that flagellin released by Gram-negative pathogens may contribute to the inflammatory response by an LPS- and Toll-like receptor-4-independent pathway.",
author = "Tonyia Eaves-Pyles and K. Murthy and L. Liaudet and L. Vir{\'a}g and G. Ross and Soriano, {F. G.} and Csaba Szabo and Salzman, {A. L.}",
year = "2001",
month = "1",
day = "15",
language = "English (US)",
volume = "166",
pages = "1248--1260",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "2",

}

TY - JOUR

T1 - Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation

T2 - IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction

AU - Eaves-Pyles, Tonyia

AU - Murthy, K.

AU - Liaudet, L.

AU - Virág, L.

AU - Ross, G.

AU - Soriano, F. G.

AU - Szabo, Csaba

AU - Salzman, A. L.

PY - 2001/1/15

Y1 - 2001/1/15

N2 - Gram-negative sepsis is mediated by the actions of proinflammatory genes induced in response to microbes and their products. We report that flagellin, the monomeric subunit of flagella, is a potent proinflammatory species released by Salmonella. Flagellin (1 μg/ml) induces IκBα degradation, NF-κB nuclear translocation, and inducible NO synthase expression in cultured intestinal epithelial cells (IEC). Aflagellic Salmonella mutants do not induce NF-κB activation or NO production by cultured IEC. Antiserum to flagellin blocks NO production in IEC induced by medium conditioned by a variety of motile Gram-negative enteric pathogens (Escherichia coli, Salmonella muenchen, Serratia marcescens, Proteus mirabilis, and Proteus vulgaris). Flagellin, when injected systemically (∼10 μg/mouse), induces systemic inflammation characterized by the systemic expression of a range of proinflammatory cytokines and chemokines and of inducible NO synthase. At higher doses (∼300 μg/mouse), flagellin induces shock, chaeacterized by hypotension, reduced vascular contractility in mice, and death. The effects of flagellin do not diminish in C3H/HeJ LPS-resistant mice, indicating that the Toll-like receptor-4 receptor is not involved in flagellin's actions. In LPS-resistant mice, i.p. injection of S. dublin flagellin or medium conditioned by wild-type S. dublin induces serum IFN-γ and TNF-α, whereas medium conditioned by aflagellic mutants has no effect. Flagellin can be detected in the blood of rats with septic shock induced by live bacteria at approximately 1 μg/ml. We propose that flagellin released by Gram-negative pathogens may contribute to the inflammatory response by an LPS- and Toll-like receptor-4-independent pathway.

AB - Gram-negative sepsis is mediated by the actions of proinflammatory genes induced in response to microbes and their products. We report that flagellin, the monomeric subunit of flagella, is a potent proinflammatory species released by Salmonella. Flagellin (1 μg/ml) induces IκBα degradation, NF-κB nuclear translocation, and inducible NO synthase expression in cultured intestinal epithelial cells (IEC). Aflagellic Salmonella mutants do not induce NF-κB activation or NO production by cultured IEC. Antiserum to flagellin blocks NO production in IEC induced by medium conditioned by a variety of motile Gram-negative enteric pathogens (Escherichia coli, Salmonella muenchen, Serratia marcescens, Proteus mirabilis, and Proteus vulgaris). Flagellin, when injected systemically (∼10 μg/mouse), induces systemic inflammation characterized by the systemic expression of a range of proinflammatory cytokines and chemokines and of inducible NO synthase. At higher doses (∼300 μg/mouse), flagellin induces shock, chaeacterized by hypotension, reduced vascular contractility in mice, and death. The effects of flagellin do not diminish in C3H/HeJ LPS-resistant mice, indicating that the Toll-like receptor-4 receptor is not involved in flagellin's actions. In LPS-resistant mice, i.p. injection of S. dublin flagellin or medium conditioned by wild-type S. dublin induces serum IFN-γ and TNF-α, whereas medium conditioned by aflagellic mutants has no effect. Flagellin can be detected in the blood of rats with septic shock induced by live bacteria at approximately 1 μg/ml. We propose that flagellin released by Gram-negative pathogens may contribute to the inflammatory response by an LPS- and Toll-like receptor-4-independent pathway.

UR - http://www.scopus.com/inward/record.url?scp=0035863730&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035863730&partnerID=8YFLogxK

M3 - Article

VL - 166

SP - 1248

EP - 1260

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 2

ER -