Abstract
Purpose: Studies were conducted to investigate dilute solutions of the monoclonal antibody (mAb) bevacizumab, mAb fragment ranibizumab and fusion protein aflibercept, develop common procedures for formulation of low concentration mAbs and identify a stabilizing formulation for anti-VEGF mAbs for use in in vitro permeation studies. Methods: Excipient substitutions were screened. The most stabilizing formulation was chosen. Standard dilutions of bevacizumab, ranibizumab and aflibercept were prepared in PBS, manufacturer’s formulation, and the new formulation. Analysis was by SE-HPLC and ELISA. Stability, disaggregation and pre-exposure tests were studied. Results: When Avastin, Lucentis and Eylea are diluted in PBS or manufacturer’s formulation, there is a 40–50% loss of monomer concentration and drug activity. A formulation containing 0.3% NaCl, 7.5% trehalose, 10 mM arginine and 0.04% Tween 80 at a pH of 6.78 stabilized the mAbs and minimized the drug loss. The formulation also disaggregates mAb aggregation while preserving the activity. Degassing the formulation increases recovery. Conclusions: We developed a novel formulation that significantly stabilizes mAbs under unfavorable conditions such as low concentration or body temperature. The formulation allows for tissue permeation experimentation. The formulation also exhibits a disaggregating effect on mAbs, which can be applied to the manufacture/packaging of mAbs and bioassay reagents.
Original language | English (US) |
---|---|
Article number | 78 |
Journal | Pharmaceutical Research |
Volume | 35 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2018 |
Keywords
- ELISA
- SE-HPLC
- aflibercept
- bevacizumab
- ranibizumab
ASJC Scopus subject areas
- Biotechnology
- Molecular Medicine
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry
- Pharmacology (medical)