TY - JOUR
T1 - Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul)
AU - Shaik, Noor M.
AU - Misra, Anurag
AU - Singh, Somesh
AU - Fatangare, Amol B.
AU - Ramakumar, Suryanarayanarao
AU - Rawal, Shuban K.
AU - Khan, Bashir M.
N1 - Funding Information:
Acknowledgments Financial support in the form of Junior & Senior Research Fellowships to Noor M. Shaik by Council of Scientific and Industrial Research, New Delhi and to Anurag Misra by University Grants Commission, New Delhi is gratefully acknowledged.
PY - 2013/2
Y1 - 2013/2
N2 - Glycosyl hydrolase family 1 β-glucosidases are important enzymes that serve many diverse functions in plants including defense, whereby hydrolyzing the defensive compounds such as hydroxynitrile glucosides. A hydroxynitrile glucoside cleaving β-glucosidase gene (Llbglu1) was isolated from Leucaena leucocephala, cloned into pET-28a (+) and expressed in E. coli BL21 (DE3) cells. The recombinant enzyme was purified by Ni-NTA affinity chromatography. The optimal temperature and pH for this β-glucosidase were found to be 45 C and 4.8, respectively. The purified Llbglu1 enzyme hydrolyzed the synthetic glycosides, pNPGlucoside (pNPGlc) and pNPGalactoside (pNPGal). Also, the enzyme hydrolyzed amygdalin, a hydroxynitrile glycoside and a few of the tested flavonoid and isoflavonoid glucosides. The kinetic parameters K m and V max were found to be 38.59 μM and 0.8237 μM/mg/min for pNPGlc, whereas for pNPGal the values were observed as 1845 μM and 0.1037 μM/mg/min. In the present study, a three dimensional (3D) model of the Llbglu1 was built by MODELLER software to find out the substrate binding sites and the quality of the model was examined using the program PROCHEK. Docking studies indicated that conserved active site residues are Glu 199, Glu 413, His 153, Asn 198, Val 270, Asn 340, and Trp 462. Docking of rhodiocyanoside A with the modeled Llbglu1 resulted in a binding with free energy change (ΔG) of -5.52 kcal/mol on which basis rhodiocyanoside A could be considered as a potential substrate.
AB - Glycosyl hydrolase family 1 β-glucosidases are important enzymes that serve many diverse functions in plants including defense, whereby hydrolyzing the defensive compounds such as hydroxynitrile glucosides. A hydroxynitrile glucoside cleaving β-glucosidase gene (Llbglu1) was isolated from Leucaena leucocephala, cloned into pET-28a (+) and expressed in E. coli BL21 (DE3) cells. The recombinant enzyme was purified by Ni-NTA affinity chromatography. The optimal temperature and pH for this β-glucosidase were found to be 45 C and 4.8, respectively. The purified Llbglu1 enzyme hydrolyzed the synthetic glycosides, pNPGlucoside (pNPGlc) and pNPGalactoside (pNPGal). Also, the enzyme hydrolyzed amygdalin, a hydroxynitrile glycoside and a few of the tested flavonoid and isoflavonoid glucosides. The kinetic parameters K m and V max were found to be 38.59 μM and 0.8237 μM/mg/min for pNPGlc, whereas for pNPGal the values were observed as 1845 μM and 0.1037 μM/mg/min. In the present study, a three dimensional (3D) model of the Llbglu1 was built by MODELLER software to find out the substrate binding sites and the quality of the model was examined using the program PROCHEK. Docking studies indicated that conserved active site residues are Glu 199, Glu 413, His 153, Asn 198, Val 270, Asn 340, and Trp 462. Docking of rhodiocyanoside A with the modeled Llbglu1 resulted in a binding with free energy change (ΔG) of -5.52 kcal/mol on which basis rhodiocyanoside A could be considered as a potential substrate.
KW - Glycosyl hydrolase family 1
KW - Homology modeling
KW - Leucaena leucocephala
KW - Molecular docking
UR - http://www.scopus.com/inward/record.url?scp=84878377537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878377537&partnerID=8YFLogxK
U2 - 10.1007/s11033-012-2179-6
DO - 10.1007/s11033-012-2179-6
M3 - Article
C2 - 23079707
AN - SCOPUS:84878377537
SN - 0301-4851
VL - 40
SP - 1351
EP - 1363
JO - Molecular Biology Reports
JF - Molecular Biology Reports
IS - 2
ER -