Functionally Similar Vanadate-induced 8-Azidoadenosine 5′-[α -32P]Diphosphate-trapped Transition State Intermediates of Human P-glycoprotein are Generated in the Absence and Presence of ATP Hydrolysis

Zuben E. Sauna, Melissa Smith-Phillips, Marianna Müller, Suresh V. Ambudkar

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump whose overexpression confers multidrug resistance to cancer cells. Pgp exhibits a robust drug substrate-stimulable ATPase activity, and vanadate (Vi) blocks this activity effectively by trapping Pgp nucleotide in a non-covalent stable transition state conformation. In this study we compare Vi-induced [α-32P]8-azido-ADP trapping into Pgp in the presence of [α-32P]8-azido-ATP (with ATP hydrolysis) or [α- 32P]8-azido-ADP (without ATP hydrolysis). Vi mimics Pi to trap the nucleotide tenaciously in the Pgp·[α- 32P]8-azido-ADP·Vi conformation in either condition. Thus, by using [α-32P]8-azido-ADP we show that the Vi-induced transition state of Pgp can be generated even in the absence of ATP hydrolysis. Furthermore, half-maximal trapping of nucleotide into Pgp in the presence of Vi occurs at similar concentrations of [α-32P]8-azido-ATP or [α-32P]8-azido-ADP. The trapped [α- 32P]8-azido-ADP is almost equally distributed between the N- and the C-terminal ATP sites of Pgp in both conditions. Additionally, point mutations in the Walker B domain of either the N- (D555N) or C (D1200N)-terminal ATP sites that arrest ATP hydrolysis and Vi-induced trapping also show abrogation of [α-32P]8-azido-ADP trapping into Pgp in the absence of hydrolysis. These data suggest that both ATP sites are dependent on each other for function and that each site exhibits similar affinity for 8-azido-ATP (ATP) or 8-azido-ADP (ADP). Similarly, Pgp in the transition state conformation generated with either ADP or ATP exhibits drastically reduced affinity for the binding of analogues of drug substrate ([125I]iodoarylazidoprazosin) as well as nucleotide (2′(3′)-O-(2,4,6-trinitrophenyl)-adenosine 5′-triphosphate). Analyses of Arrhenius plots show that trapping of Pgp with [α-32P]8-azido-ADP (in the absence of hydrolysis) displays an ∼2.5-fold higher energy of activation (152 kJ/mol) compared with that observed when the transition state intermediate is generated through hydrolysis of [α-32P]8-azido-ATP (62kJ/mol). In aggregate, these results demonstrate that the Pgp·[α- 32P]8-azido-ADP (or ADP)·Vi transition state complexes generated either in the absence of or accompanying [α- 32P]8-azido-ATP hydrolysis are functionally indistinguishable.

Original languageEnglish (US)
Pages (from-to)21199-21208
Number of pages10
JournalJournal of Biological Chemistry
Volume276
Issue number24
DOIs
StatePublished - Jun 15 2001
Externally publishedYes

Fingerprint

Vanadates
Diphosphates
P-Glycoprotein
Hydrolysis
Adenosine Triphosphate
Nucleotides
Adenosine Diphosphate
Conformations
8-azidoadenosine
Pharmaceutical Preparations
8-azidoadenosine diphosphate
Arrhenius plots
Multiple Drug Resistance
Substrates
Point Mutation
Adenosine
Adenosine Triphosphatases
Chemical activation
Cells
8-azidoadenosine 5'-triphosphate

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{576494d1a2654e6d9e992138475428f5,
title = "Functionally Similar Vanadate-induced 8-Azidoadenosine 5′-[α -32P]Diphosphate-trapped Transition State Intermediates of Human P-glycoprotein are Generated in the Absence and Presence of ATP Hydrolysis",
abstract = "P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump whose overexpression confers multidrug resistance to cancer cells. Pgp exhibits a robust drug substrate-stimulable ATPase activity, and vanadate (Vi) blocks this activity effectively by trapping Pgp nucleotide in a non-covalent stable transition state conformation. In this study we compare Vi-induced [α-32P]8-azido-ADP trapping into Pgp in the presence of [α-32P]8-azido-ATP (with ATP hydrolysis) or [α- 32P]8-azido-ADP (without ATP hydrolysis). Vi mimics Pi to trap the nucleotide tenaciously in the Pgp·[α- 32P]8-azido-ADP·Vi conformation in either condition. Thus, by using [α-32P]8-azido-ADP we show that the Vi-induced transition state of Pgp can be generated even in the absence of ATP hydrolysis. Furthermore, half-maximal trapping of nucleotide into Pgp in the presence of Vi occurs at similar concentrations of [α-32P]8-azido-ATP or [α-32P]8-azido-ADP. The trapped [α- 32P]8-azido-ADP is almost equally distributed between the N- and the C-terminal ATP sites of Pgp in both conditions. Additionally, point mutations in the Walker B domain of either the N- (D555N) or C (D1200N)-terminal ATP sites that arrest ATP hydrolysis and Vi-induced trapping also show abrogation of [α-32P]8-azido-ADP trapping into Pgp in the absence of hydrolysis. These data suggest that both ATP sites are dependent on each other for function and that each site exhibits similar affinity for 8-azido-ATP (ATP) or 8-azido-ADP (ADP). Similarly, Pgp in the transition state conformation generated with either ADP or ATP exhibits drastically reduced affinity for the binding of analogues of drug substrate ([125I]iodoarylazidoprazosin) as well as nucleotide (2′(3′)-O-(2,4,6-trinitrophenyl)-adenosine 5′-triphosphate). Analyses of Arrhenius plots show that trapping of Pgp with [α-32P]8-azido-ADP (in the absence of hydrolysis) displays an ∼2.5-fold higher energy of activation (152 kJ/mol) compared with that observed when the transition state intermediate is generated through hydrolysis of [α-32P]8-azido-ATP (62kJ/mol). In aggregate, these results demonstrate that the Pgp·[α- 32P]8-azido-ADP (or ADP)·Vi transition state complexes generated either in the absence of or accompanying [α- 32P]8-azido-ATP hydrolysis are functionally indistinguishable.",
author = "Sauna, {Zuben E.} and Melissa Smith-Phillips and Marianna M{\"u}ller and Ambudkar, {Suresh V.}",
year = "2001",
month = "6",
day = "15",
doi = "10.1074/jbc.M100886200",
language = "English (US)",
volume = "276",
pages = "21199--21208",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "24",

}

TY - JOUR

T1 - Functionally Similar Vanadate-induced 8-Azidoadenosine 5′-[α -32P]Diphosphate-trapped Transition State Intermediates of Human P-glycoprotein are Generated in the Absence and Presence of ATP Hydrolysis

AU - Sauna, Zuben E.

AU - Smith-Phillips, Melissa

AU - Müller, Marianna

AU - Ambudkar, Suresh V.

PY - 2001/6/15

Y1 - 2001/6/15

N2 - P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump whose overexpression confers multidrug resistance to cancer cells. Pgp exhibits a robust drug substrate-stimulable ATPase activity, and vanadate (Vi) blocks this activity effectively by trapping Pgp nucleotide in a non-covalent stable transition state conformation. In this study we compare Vi-induced [α-32P]8-azido-ADP trapping into Pgp in the presence of [α-32P]8-azido-ATP (with ATP hydrolysis) or [α- 32P]8-azido-ADP (without ATP hydrolysis). Vi mimics Pi to trap the nucleotide tenaciously in the Pgp·[α- 32P]8-azido-ADP·Vi conformation in either condition. Thus, by using [α-32P]8-azido-ADP we show that the Vi-induced transition state of Pgp can be generated even in the absence of ATP hydrolysis. Furthermore, half-maximal trapping of nucleotide into Pgp in the presence of Vi occurs at similar concentrations of [α-32P]8-azido-ATP or [α-32P]8-azido-ADP. The trapped [α- 32P]8-azido-ADP is almost equally distributed between the N- and the C-terminal ATP sites of Pgp in both conditions. Additionally, point mutations in the Walker B domain of either the N- (D555N) or C (D1200N)-terminal ATP sites that arrest ATP hydrolysis and Vi-induced trapping also show abrogation of [α-32P]8-azido-ADP trapping into Pgp in the absence of hydrolysis. These data suggest that both ATP sites are dependent on each other for function and that each site exhibits similar affinity for 8-azido-ATP (ATP) or 8-azido-ADP (ADP). Similarly, Pgp in the transition state conformation generated with either ADP or ATP exhibits drastically reduced affinity for the binding of analogues of drug substrate ([125I]iodoarylazidoprazosin) as well as nucleotide (2′(3′)-O-(2,4,6-trinitrophenyl)-adenosine 5′-triphosphate). Analyses of Arrhenius plots show that trapping of Pgp with [α-32P]8-azido-ADP (in the absence of hydrolysis) displays an ∼2.5-fold higher energy of activation (152 kJ/mol) compared with that observed when the transition state intermediate is generated through hydrolysis of [α-32P]8-azido-ATP (62kJ/mol). In aggregate, these results demonstrate that the Pgp·[α- 32P]8-azido-ADP (or ADP)·Vi transition state complexes generated either in the absence of or accompanying [α- 32P]8-azido-ATP hydrolysis are functionally indistinguishable.

AB - P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump whose overexpression confers multidrug resistance to cancer cells. Pgp exhibits a robust drug substrate-stimulable ATPase activity, and vanadate (Vi) blocks this activity effectively by trapping Pgp nucleotide in a non-covalent stable transition state conformation. In this study we compare Vi-induced [α-32P]8-azido-ADP trapping into Pgp in the presence of [α-32P]8-azido-ATP (with ATP hydrolysis) or [α- 32P]8-azido-ADP (without ATP hydrolysis). Vi mimics Pi to trap the nucleotide tenaciously in the Pgp·[α- 32P]8-azido-ADP·Vi conformation in either condition. Thus, by using [α-32P]8-azido-ADP we show that the Vi-induced transition state of Pgp can be generated even in the absence of ATP hydrolysis. Furthermore, half-maximal trapping of nucleotide into Pgp in the presence of Vi occurs at similar concentrations of [α-32P]8-azido-ATP or [α-32P]8-azido-ADP. The trapped [α- 32P]8-azido-ADP is almost equally distributed between the N- and the C-terminal ATP sites of Pgp in both conditions. Additionally, point mutations in the Walker B domain of either the N- (D555N) or C (D1200N)-terminal ATP sites that arrest ATP hydrolysis and Vi-induced trapping also show abrogation of [α-32P]8-azido-ADP trapping into Pgp in the absence of hydrolysis. These data suggest that both ATP sites are dependent on each other for function and that each site exhibits similar affinity for 8-azido-ATP (ATP) or 8-azido-ADP (ADP). Similarly, Pgp in the transition state conformation generated with either ADP or ATP exhibits drastically reduced affinity for the binding of analogues of drug substrate ([125I]iodoarylazidoprazosin) as well as nucleotide (2′(3′)-O-(2,4,6-trinitrophenyl)-adenosine 5′-triphosphate). Analyses of Arrhenius plots show that trapping of Pgp with [α-32P]8-azido-ADP (in the absence of hydrolysis) displays an ∼2.5-fold higher energy of activation (152 kJ/mol) compared with that observed when the transition state intermediate is generated through hydrolysis of [α-32P]8-azido-ATP (62kJ/mol). In aggregate, these results demonstrate that the Pgp·[α- 32P]8-azido-ADP (or ADP)·Vi transition state complexes generated either in the absence of or accompanying [α- 32P]8-azido-ATP hydrolysis are functionally indistinguishable.

UR - http://www.scopus.com/inward/record.url?scp=0035877703&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035877703&partnerID=8YFLogxK

U2 - 10.1074/jbc.M100886200

DO - 10.1074/jbc.M100886200

M3 - Article

C2 - 11287418

AN - SCOPUS:0035877703

VL - 276

SP - 21199

EP - 21208

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 24

ER -