Gallstone fragmentation during biliary lithotripsy

Effect of stone composition and structure

R. K. Zeman, T. Marchand, W. J. Davros, B. S. Garra, M. Glass-Royal, R. D. Soloway

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

In vitro lithotripsy with the Siemens Lithostar was conducted on 36 radiolucent or minimally calcified gallstones housed in an anthropomorphic phantom. The ease and pattern of fragmentation were correlated with global composition for the entire stone, regional or microcomposition (determined by Fourier-transform infrared spectroscopy), and microstructure (determined by scanning electron microscopy). Stones made up of more than 62% cholesterol required 50% more shock waves to pulverize all fragments to 0.3 cm or less than did stones of less than 62% cholesterol (p < .01). An inverse relationship was found between the number of shock waves needed for fragmentation and the cholesterol content (r = .77). Although a broad range of fragmentation responses occurred, little variation was seen in the ease of fragmentation within stone families. The majority of stones fractured along radially oriented cholesterol plates, but one third of stones treated showed initial chipping or flaking at the periphery before radial fracture. This type of peripheral erosion most often occurred in stones with peripheral pigment rims. These stones required more shock waves and lagged in pulverization compared with more homogeneous cholesterol stones. The efficiency of fragmentation during biliary lithotripsy correlates with the stones' global cholesterol content. A stone's architecture, as reflected by its regional composition and microstructure, partially predicts the mechanism of fragmentation. These in vitro data may be useful in further refining criteria for selecting patients and understanding the fragmentation process.

Original languageEnglish (US)
Pages (from-to)493-499
Number of pages7
JournalAmerican Journal of Roentgenology
Volume156
Issue number3
StatePublished - 1991
Externally publishedYes

Fingerprint

Lithotripsy
Gallstones
Cholesterol
Fourier Transform Infrared Spectroscopy
Electron Scanning Microscopy

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Cite this

Zeman, R. K., Marchand, T., Davros, W. J., Garra, B. S., Glass-Royal, M., & Soloway, R. D. (1991). Gallstone fragmentation during biliary lithotripsy: Effect of stone composition and structure. American Journal of Roentgenology, 156(3), 493-499.

Gallstone fragmentation during biliary lithotripsy : Effect of stone composition and structure. / Zeman, R. K.; Marchand, T.; Davros, W. J.; Garra, B. S.; Glass-Royal, M.; Soloway, R. D.

In: American Journal of Roentgenology, Vol. 156, No. 3, 1991, p. 493-499.

Research output: Contribution to journalArticle

Zeman, RK, Marchand, T, Davros, WJ, Garra, BS, Glass-Royal, M & Soloway, RD 1991, 'Gallstone fragmentation during biliary lithotripsy: Effect of stone composition and structure', American Journal of Roentgenology, vol. 156, no. 3, pp. 493-499.
Zeman RK, Marchand T, Davros WJ, Garra BS, Glass-Royal M, Soloway RD. Gallstone fragmentation during biliary lithotripsy: Effect of stone composition and structure. American Journal of Roentgenology. 1991;156(3):493-499.
Zeman, R. K. ; Marchand, T. ; Davros, W. J. ; Garra, B. S. ; Glass-Royal, M. ; Soloway, R. D. / Gallstone fragmentation during biliary lithotripsy : Effect of stone composition and structure. In: American Journal of Roentgenology. 1991 ; Vol. 156, No. 3. pp. 493-499.
@article{fdbe9b6939cb45aaa7829a07ffd9d03a,
title = "Gallstone fragmentation during biliary lithotripsy: Effect of stone composition and structure",
abstract = "In vitro lithotripsy with the Siemens Lithostar was conducted on 36 radiolucent or minimally calcified gallstones housed in an anthropomorphic phantom. The ease and pattern of fragmentation were correlated with global composition for the entire stone, regional or microcomposition (determined by Fourier-transform infrared spectroscopy), and microstructure (determined by scanning electron microscopy). Stones made up of more than 62{\%} cholesterol required 50{\%} more shock waves to pulverize all fragments to 0.3 cm or less than did stones of less than 62{\%} cholesterol (p < .01). An inverse relationship was found between the number of shock waves needed for fragmentation and the cholesterol content (r = .77). Although a broad range of fragmentation responses occurred, little variation was seen in the ease of fragmentation within stone families. The majority of stones fractured along radially oriented cholesterol plates, but one third of stones treated showed initial chipping or flaking at the periphery before radial fracture. This type of peripheral erosion most often occurred in stones with peripheral pigment rims. These stones required more shock waves and lagged in pulverization compared with more homogeneous cholesterol stones. The efficiency of fragmentation during biliary lithotripsy correlates with the stones' global cholesterol content. A stone's architecture, as reflected by its regional composition and microstructure, partially predicts the mechanism of fragmentation. These in vitro data may be useful in further refining criteria for selecting patients and understanding the fragmentation process.",
author = "Zeman, {R. K.} and T. Marchand and Davros, {W. J.} and Garra, {B. S.} and M. Glass-Royal and Soloway, {R. D.}",
year = "1991",
language = "English (US)",
volume = "156",
pages = "493--499",
journal = "American Journal of Roentgenology",
issn = "0361-803X",
publisher = "American Roentgen Ray Society",
number = "3",

}

TY - JOUR

T1 - Gallstone fragmentation during biliary lithotripsy

T2 - Effect of stone composition and structure

AU - Zeman, R. K.

AU - Marchand, T.

AU - Davros, W. J.

AU - Garra, B. S.

AU - Glass-Royal, M.

AU - Soloway, R. D.

PY - 1991

Y1 - 1991

N2 - In vitro lithotripsy with the Siemens Lithostar was conducted on 36 radiolucent or minimally calcified gallstones housed in an anthropomorphic phantom. The ease and pattern of fragmentation were correlated with global composition for the entire stone, regional or microcomposition (determined by Fourier-transform infrared spectroscopy), and microstructure (determined by scanning electron microscopy). Stones made up of more than 62% cholesterol required 50% more shock waves to pulverize all fragments to 0.3 cm or less than did stones of less than 62% cholesterol (p < .01). An inverse relationship was found between the number of shock waves needed for fragmentation and the cholesterol content (r = .77). Although a broad range of fragmentation responses occurred, little variation was seen in the ease of fragmentation within stone families. The majority of stones fractured along radially oriented cholesterol plates, but one third of stones treated showed initial chipping or flaking at the periphery before radial fracture. This type of peripheral erosion most often occurred in stones with peripheral pigment rims. These stones required more shock waves and lagged in pulverization compared with more homogeneous cholesterol stones. The efficiency of fragmentation during biliary lithotripsy correlates with the stones' global cholesterol content. A stone's architecture, as reflected by its regional composition and microstructure, partially predicts the mechanism of fragmentation. These in vitro data may be useful in further refining criteria for selecting patients and understanding the fragmentation process.

AB - In vitro lithotripsy with the Siemens Lithostar was conducted on 36 radiolucent or minimally calcified gallstones housed in an anthropomorphic phantom. The ease and pattern of fragmentation were correlated with global composition for the entire stone, regional or microcomposition (determined by Fourier-transform infrared spectroscopy), and microstructure (determined by scanning electron microscopy). Stones made up of more than 62% cholesterol required 50% more shock waves to pulverize all fragments to 0.3 cm or less than did stones of less than 62% cholesterol (p < .01). An inverse relationship was found between the number of shock waves needed for fragmentation and the cholesterol content (r = .77). Although a broad range of fragmentation responses occurred, little variation was seen in the ease of fragmentation within stone families. The majority of stones fractured along radially oriented cholesterol plates, but one third of stones treated showed initial chipping or flaking at the periphery before radial fracture. This type of peripheral erosion most often occurred in stones with peripheral pigment rims. These stones required more shock waves and lagged in pulverization compared with more homogeneous cholesterol stones. The efficiency of fragmentation during biliary lithotripsy correlates with the stones' global cholesterol content. A stone's architecture, as reflected by its regional composition and microstructure, partially predicts the mechanism of fragmentation. These in vitro data may be useful in further refining criteria for selecting patients and understanding the fragmentation process.

UR - http://www.scopus.com/inward/record.url?scp=0025732229&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025732229&partnerID=8YFLogxK

M3 - Article

VL - 156

SP - 493

EP - 499

JO - American Journal of Roentgenology

JF - American Journal of Roentgenology

SN - 0361-803X

IS - 3

ER -