TY - CHAP
T1 - Generation of a single-cycle replicable Rift Valley fever vaccine
AU - Murakami, Shin
AU - Terasaki, Kaori
AU - Makino, Shinji
N1 - Funding Information:
We thank Robert Tesh, C. J. Peters, and Tetsuro Ikegami for anti-MP-12 antibody, monoclonal antibodies against Gn, and bacterially expressed N protein used for anti-N protein antibody production, respectively. This work was supported by Public Health Service grant AI101772, and in part by the John Sealy Memorial Endowment Fund for Biomedical Research. S. Murakami was supported by the James W. McLaughlin Fellowship fund and by a research fellowship from the Japan Society for the Promotion of Science
Publisher Copyright:
© Springer Science+Business Media New York 2016.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. The virus carries a tripartite, single-stranded, and negative–sense RNA genome, designated as L, M, and S RNAs. RVFV spread can be prevented by the effective vaccination of animals and humans. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, MP-12 showed neuroinvasiveness and neurovirulence in young mice and immunodeficiency mice. Hence, there is a concern for the use of MP-12 to certain individuals, especially those that are immunocompromised. To improve MP-12 safety, we have generated a single-cycle, replicable MP-12 (scMP-12), which carries L RNA, S RNA encoding green fluorescent protein in place of a viral nonstructural protein NSs, and an M RNA encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function. The scMP-12 undergoes efficient amplification in the Vero-G cell line, which is a Vero cell line stably expressing viral envelope proteins, while it undergoes single-cycle replication in naïve cells and completely lacks neurovirulence in suckling mice after intracranial inoculation. A single-dose vaccination of mice with scMP-12 confers protective immunity. Thus, scMP-12 represents a new, promising RVF vaccine candidate. Here we describe protocols for scMP-12 generation by using a reverse genetics system, establishment of Vero-G cells, and titration of scMP-12 in Vero-G cells.
AB - Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. The virus carries a tripartite, single-stranded, and negative–sense RNA genome, designated as L, M, and S RNAs. RVFV spread can be prevented by the effective vaccination of animals and humans. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, MP-12 showed neuroinvasiveness and neurovirulence in young mice and immunodeficiency mice. Hence, there is a concern for the use of MP-12 to certain individuals, especially those that are immunocompromised. To improve MP-12 safety, we have generated a single-cycle, replicable MP-12 (scMP-12), which carries L RNA, S RNA encoding green fluorescent protein in place of a viral nonstructural protein NSs, and an M RNA encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function. The scMP-12 undergoes efficient amplification in the Vero-G cell line, which is a Vero cell line stably expressing viral envelope proteins, while it undergoes single-cycle replication in naïve cells and completely lacks neurovirulence in suckling mice after intracranial inoculation. A single-dose vaccination of mice with scMP-12 confers protective immunity. Thus, scMP-12 represents a new, promising RVF vaccine candidate. Here we describe protocols for scMP-12 generation by using a reverse genetics system, establishment of Vero-G cells, and titration of scMP-12 in Vero-G cells.
KW - Reverse genetics
KW - Rift Valley fever virus
KW - Single-cycle replicable virus
KW - Stable cell establishment
KW - Transfection
KW - Vaccine
UR - http://www.scopus.com/inward/record.url?scp=84963818979&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84963818979&partnerID=8YFLogxK
U2 - 10.1007/978-1-4939-3387-7_9
DO - 10.1007/978-1-4939-3387-7_9
M3 - Chapter
C2 - 27076131
AN - SCOPUS:84963818979
T3 - Methods in Molecular Biology
SP - 187
EP - 206
BT - Methods in Molecular Biology
PB - Humana Press Inc.
ER -