Genetic control of autoimmunity to acetylcholine receptors: Role of Ia molecules

P. Christadoss, V. A. Lennon, C. J. Krco

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Evidence that human susceptibility to myasthenia gravis (MG) might be determined genetically is suggested by clinical surveys showing an association of MG with an increased frequency of certain histocompatibility antigens. We have studied the experimental autoimmune model of MG in mice to investigate whether or not major histocompatibility complex (MHC) gene products play a role in determining susceptibility to EAMG. When MHC congenic and recombinant strains of mice were inoculated with Torpedo acetylcholine receptor (AChR) and adjuvants, the magnitude of autoantibody responses to muscle AChR and of the defect of neuromuscular transmission (i.e., reduction in MEPP amplitude) closely paralleled in vitro lymphocyte proliferative responses to Torpedo AChR. Reduction in MEPP amplitude correlated strikingly with the degree to which autologous muscle AChR was complexed with antibody. Lymphocyte responses to Torpedo AChR, antibody responses to mouse muscle AChR, and susceptiblity to EAMG are controlled by gene(s) at the I-A subregion of the H-2 complex. Backcross studies confirmed that lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, probably at the I-A subregion. Mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the Ia molecule, converted high responsiveness to low responsiveness. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with specific anti-I-A alloantisera. Cellular immune responses to AChR are dependent on Lyt 1+23- cells and adherent cells. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AChR, probably in the presentation of AChR to helper (Lyt 1+23-) T-lymphocytes, which thereby help B-lymphocytes to differentiate into anti-AChR antibody forming cells.

Original languageEnglish (US)
Pages (from-to)258-277
Number of pages20
JournalAnnals of the New York Academy of Sciences
VolumeVol. 377
StatePublished - 1981
Externally publishedYes

Fingerprint

Cholinergic Receptors
Autoimmunity
Molecules
Lymphocytes
Torpedo
Myasthenia Gravis
Muscle
Genes
Major Histocompatibility Complex
Muscles
Antibodies
Dominant Genes
Histocompatibility Antigens
T-cells
Macrophages
Histocompatibility Antigens Class II
Cellular Immunity
Autoantibodies
Antibody Formation
Cells

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Genetic control of autoimmunity to acetylcholine receptors : Role of Ia molecules. / Christadoss, P.; Lennon, V. A.; Krco, C. J.

In: Annals of the New York Academy of Sciences, Vol. Vol. 377, 1981, p. 258-277.

Research output: Contribution to journalArticle

Christadoss, P. ; Lennon, V. A. ; Krco, C. J. / Genetic control of autoimmunity to acetylcholine receptors : Role of Ia molecules. In: Annals of the New York Academy of Sciences. 1981 ; Vol. Vol. 377. pp. 258-277.
@article{046a9b4903e7451fb9a0d716a01e1273,
title = "Genetic control of autoimmunity to acetylcholine receptors: Role of Ia molecules",
abstract = "Evidence that human susceptibility to myasthenia gravis (MG) might be determined genetically is suggested by clinical surveys showing an association of MG with an increased frequency of certain histocompatibility antigens. We have studied the experimental autoimmune model of MG in mice to investigate whether or not major histocompatibility complex (MHC) gene products play a role in determining susceptibility to EAMG. When MHC congenic and recombinant strains of mice were inoculated with Torpedo acetylcholine receptor (AChR) and adjuvants, the magnitude of autoantibody responses to muscle AChR and of the defect of neuromuscular transmission (i.e., reduction in MEPP amplitude) closely paralleled in vitro lymphocyte proliferative responses to Torpedo AChR. Reduction in MEPP amplitude correlated strikingly with the degree to which autologous muscle AChR was complexed with antibody. Lymphocyte responses to Torpedo AChR, antibody responses to mouse muscle AChR, and susceptiblity to EAMG are controlled by gene(s) at the I-A subregion of the H-2 complex. Backcross studies confirmed that lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, probably at the I-A subregion. Mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the Ia molecule, converted high responsiveness to low responsiveness. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with specific anti-I-A alloantisera. Cellular immune responses to AChR are dependent on Lyt 1+23- cells and adherent cells. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AChR, probably in the presentation of AChR to helper (Lyt 1+23-) T-lymphocytes, which thereby help B-lymphocytes to differentiate into anti-AChR antibody forming cells.",
author = "P. Christadoss and Lennon, {V. A.} and Krco, {C. J.}",
year = "1981",
language = "English (US)",
volume = "Vol. 377",
pages = "258--277",
journal = "Annals of the New York Academy of Sciences",
issn = "0077-8923",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Genetic control of autoimmunity to acetylcholine receptors

T2 - Role of Ia molecules

AU - Christadoss, P.

AU - Lennon, V. A.

AU - Krco, C. J.

PY - 1981

Y1 - 1981

N2 - Evidence that human susceptibility to myasthenia gravis (MG) might be determined genetically is suggested by clinical surveys showing an association of MG with an increased frequency of certain histocompatibility antigens. We have studied the experimental autoimmune model of MG in mice to investigate whether or not major histocompatibility complex (MHC) gene products play a role in determining susceptibility to EAMG. When MHC congenic and recombinant strains of mice were inoculated with Torpedo acetylcholine receptor (AChR) and adjuvants, the magnitude of autoantibody responses to muscle AChR and of the defect of neuromuscular transmission (i.e., reduction in MEPP amplitude) closely paralleled in vitro lymphocyte proliferative responses to Torpedo AChR. Reduction in MEPP amplitude correlated strikingly with the degree to which autologous muscle AChR was complexed with antibody. Lymphocyte responses to Torpedo AChR, antibody responses to mouse muscle AChR, and susceptiblity to EAMG are controlled by gene(s) at the I-A subregion of the H-2 complex. Backcross studies confirmed that lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, probably at the I-A subregion. Mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the Ia molecule, converted high responsiveness to low responsiveness. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with specific anti-I-A alloantisera. Cellular immune responses to AChR are dependent on Lyt 1+23- cells and adherent cells. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AChR, probably in the presentation of AChR to helper (Lyt 1+23-) T-lymphocytes, which thereby help B-lymphocytes to differentiate into anti-AChR antibody forming cells.

AB - Evidence that human susceptibility to myasthenia gravis (MG) might be determined genetically is suggested by clinical surveys showing an association of MG with an increased frequency of certain histocompatibility antigens. We have studied the experimental autoimmune model of MG in mice to investigate whether or not major histocompatibility complex (MHC) gene products play a role in determining susceptibility to EAMG. When MHC congenic and recombinant strains of mice were inoculated with Torpedo acetylcholine receptor (AChR) and adjuvants, the magnitude of autoantibody responses to muscle AChR and of the defect of neuromuscular transmission (i.e., reduction in MEPP amplitude) closely paralleled in vitro lymphocyte proliferative responses to Torpedo AChR. Reduction in MEPP amplitude correlated strikingly with the degree to which autologous muscle AChR was complexed with antibody. Lymphocyte responses to Torpedo AChR, antibody responses to mouse muscle AChR, and susceptiblity to EAMG are controlled by gene(s) at the I-A subregion of the H-2 complex. Backcross studies confirmed that lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, probably at the I-A subregion. Mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the Ia molecule, converted high responsiveness to low responsiveness. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with specific anti-I-A alloantisera. Cellular immune responses to AChR are dependent on Lyt 1+23- cells and adherent cells. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AChR, probably in the presentation of AChR to helper (Lyt 1+23-) T-lymphocytes, which thereby help B-lymphocytes to differentiate into anti-AChR antibody forming cells.

UR - http://www.scopus.com/inward/record.url?scp=0019732412&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0019732412&partnerID=8YFLogxK

M3 - Article

C2 - 6803646

AN - SCOPUS:0019732412

VL - Vol. 377

SP - 258

EP - 277

JO - Annals of the New York Academy of Sciences

JF - Annals of the New York Academy of Sciences

SN - 0077-8923

ER -