Abstract
Purpose: To investigate the genotoxic effects of lutein (LBP) and β -carotene breakdown products (β -apo-8-carotenal, BA8C) and the preventive role of GSH in human retinal pigment epithelial cells (ARPE-19). Methods: LBP- and BA8C-induced DNA damage in human retinal pigment epithelial cells (ARPE-19) was determined by comet assay. The DNA damage was quantified by the image analysis system using Comet Score™ software. ARPE-19 cell viability was determined by CellTiter 96 AQueous one-solution cell proliferation assay kit. Intracellular GSH levels were measured by Ellman's reagent. Results: Incubation of serum-starved ARPE-19 cells with LBP and BA8C caused significant DNA damage in a dose- and time-dependent manner. The DNA damage and cell death incurred by LBP and BA8C were significantly prevented by N-acetylcysteine (NAC) but not by α -tocopherol ascorbic acid (T AA). Furthermore, BSO-induced GSH depletion in ARPE-19 cells caused a significant elevation in LBP- and BA8C-induced DNA damage, whereas increased GSH levels in ARPE-19 cells prevented it. Conclusions: Our results suggest that breakdown products of dietary carotenoids could be genotoxic in ARPE-19 cells. LBP-induced genotoxic effects could worsen oxidative stress. The intracellular GSH pool in ARPE-19 cells might play a critical role in carotenoid breakdown products-induced genotoxicity.
Original language | English (US) |
---|---|
Pages (from-to) | 737-747 |
Number of pages | 11 |
Journal | Current Eye Research |
Volume | 34 |
Issue number | 9 |
DOIs | |
State | Published - 2009 |
Externally published | Yes |
Keywords
- Age-related macular degeneration
- Antioxidants
- Carotenoid breakdown products
- Carotenoids
- DNA damage
- Lutein breakdown products
ASJC Scopus subject areas
- Ophthalmology
- Sensory Systems
- Cellular and Molecular Neuroscience