Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors

Susan M. Carlton, Shengtai Zhou, Rosann Govea, Junhui Du

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

There is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity. Blocking peripheral mGluR activity by intraplantar injection of antagonists LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] (LY) (20, 100 μM, group II/III), APICA [(RS)-1-amino-5-phosphonoindan-1-carboxylic acid] (100μM, group II), or UBP1112 (α-methyl-3-methyl-4-phosphonophenylglycine) (30μM, group III) increased capsaicin (CAP)-induced nociceptive behaviors and nociceptor activity. In contrast, group II agonistAPDC[(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] (0.1μM) or group III agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) (10μM) blocked the LY-induced increase. Ca2+ imaging in dorsal root ganglion (DRG) cells confirmed LY enhanced CAP-induced Ca2+ mobilization, which was blocked by APDC and L-AP-4. We hypothesized that excess glutamate (GLU) released by high intensity and/or prolonged stimulation endogenously activated group II/III, dampening nociceptor activation. In support of this, intraplantar GLU+LY produced heat hyperalgesia, and exogenous GLU + LY applied to nociceptors produced enhanced nociceptor activity and thermal sensitization. Intraplantar Formalin, known to elevate extracellular GLU, enhanced pain behaviors in the presence of LY. LY alone produced no pain behaviors, no change in nociceptor discharge rate or heat-evoked responses, and no change in cytosolic Ca2+inDRGcells, demonstrating a lack of tonic inhibitory control. Group II/III mGluRs maintain an activity-dependent autoinhibition, capable of significantly reducing TRPV1-induced activity. They are endogenously activated after high-frequency and/or prolonged nociceptor stimulation, acting as built-in negative modulators of TRPV1 and nociceptor function, reducing pain transmission to the CNS.

Original languageEnglish (US)
Pages (from-to)12727-12737
Number of pages11
JournalJournal of Neuroscience
Volume31
Issue number36
DOIs
StatePublished - Sep 7 2011

Fingerprint

Nociceptors
Metabotropic Glutamate Receptors
Glutamic Acid
Pain
Autoreceptors
Hot Temperature
Capsaicin
LY 341495
vanilloid receptor subtype 1
Hyperalgesia
Spinal Ganglia
Carboxylic Acids
Formaldehyde
Pharmacology
Injections

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors. / Carlton, Susan M.; Zhou, Shengtai; Govea, Rosann; Du, Junhui.

In: Journal of Neuroscience, Vol. 31, No. 36, 07.09.2011, p. 12727-12737.

Research output: Contribution to journalArticle

Carlton, Susan M. ; Zhou, Shengtai ; Govea, Rosann ; Du, Junhui. / Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors. In: Journal of Neuroscience. 2011 ; Vol. 31, No. 36. pp. 12727-12737.
@article{24484e863b2b40d5820a564542be871c,
title = "Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors",
abstract = "There is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity. Blocking peripheral mGluR activity by intraplantar injection of antagonists LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] (LY) (20, 100 μM, group II/III), APICA [(RS)-1-amino-5-phosphonoindan-1-carboxylic acid] (100μM, group II), or UBP1112 (α-methyl-3-methyl-4-phosphonophenylglycine) (30μM, group III) increased capsaicin (CAP)-induced nociceptive behaviors and nociceptor activity. In contrast, group II agonistAPDC[(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] (0.1μM) or group III agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) (10μM) blocked the LY-induced increase. Ca2+ imaging in dorsal root ganglion (DRG) cells confirmed LY enhanced CAP-induced Ca2+ mobilization, which was blocked by APDC and L-AP-4. We hypothesized that excess glutamate (GLU) released by high intensity and/or prolonged stimulation endogenously activated group II/III, dampening nociceptor activation. In support of this, intraplantar GLU+LY produced heat hyperalgesia, and exogenous GLU + LY applied to nociceptors produced enhanced nociceptor activity and thermal sensitization. Intraplantar Formalin, known to elevate extracellular GLU, enhanced pain behaviors in the presence of LY. LY alone produced no pain behaviors, no change in nociceptor discharge rate or heat-evoked responses, and no change in cytosolic Ca2+inDRGcells, demonstrating a lack of tonic inhibitory control. Group II/III mGluRs maintain an activity-dependent autoinhibition, capable of significantly reducing TRPV1-induced activity. They are endogenously activated after high-frequency and/or prolonged nociceptor stimulation, acting as built-in negative modulators of TRPV1 and nociceptor function, reducing pain transmission to the CNS.",
author = "Carlton, {Susan M.} and Shengtai Zhou and Rosann Govea and Junhui Du",
year = "2011",
month = "9",
day = "7",
doi = "10.1523/JNEUROSCI.6558-10.2011",
language = "English (US)",
volume = "31",
pages = "12727--12737",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "36",

}

TY - JOUR

T1 - Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors

AU - Carlton, Susan M.

AU - Zhou, Shengtai

AU - Govea, Rosann

AU - Du, Junhui

PY - 2011/9/7

Y1 - 2011/9/7

N2 - There is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity. Blocking peripheral mGluR activity by intraplantar injection of antagonists LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] (LY) (20, 100 μM, group II/III), APICA [(RS)-1-amino-5-phosphonoindan-1-carboxylic acid] (100μM, group II), or UBP1112 (α-methyl-3-methyl-4-phosphonophenylglycine) (30μM, group III) increased capsaicin (CAP)-induced nociceptive behaviors and nociceptor activity. In contrast, group II agonistAPDC[(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] (0.1μM) or group III agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) (10μM) blocked the LY-induced increase. Ca2+ imaging in dorsal root ganglion (DRG) cells confirmed LY enhanced CAP-induced Ca2+ mobilization, which was blocked by APDC and L-AP-4. We hypothesized that excess glutamate (GLU) released by high intensity and/or prolonged stimulation endogenously activated group II/III, dampening nociceptor activation. In support of this, intraplantar GLU+LY produced heat hyperalgesia, and exogenous GLU + LY applied to nociceptors produced enhanced nociceptor activity and thermal sensitization. Intraplantar Formalin, known to elevate extracellular GLU, enhanced pain behaviors in the presence of LY. LY alone produced no pain behaviors, no change in nociceptor discharge rate or heat-evoked responses, and no change in cytosolic Ca2+inDRGcells, demonstrating a lack of tonic inhibitory control. Group II/III mGluRs maintain an activity-dependent autoinhibition, capable of significantly reducing TRPV1-induced activity. They are endogenously activated after high-frequency and/or prolonged nociceptor stimulation, acting as built-in negative modulators of TRPV1 and nociceptor function, reducing pain transmission to the CNS.

AB - There is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity. Blocking peripheral mGluR activity by intraplantar injection of antagonists LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] (LY) (20, 100 μM, group II/III), APICA [(RS)-1-amino-5-phosphonoindan-1-carboxylic acid] (100μM, group II), or UBP1112 (α-methyl-3-methyl-4-phosphonophenylglycine) (30μM, group III) increased capsaicin (CAP)-induced nociceptive behaviors and nociceptor activity. In contrast, group II agonistAPDC[(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] (0.1μM) or group III agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) (10μM) blocked the LY-induced increase. Ca2+ imaging in dorsal root ganglion (DRG) cells confirmed LY enhanced CAP-induced Ca2+ mobilization, which was blocked by APDC and L-AP-4. We hypothesized that excess glutamate (GLU) released by high intensity and/or prolonged stimulation endogenously activated group II/III, dampening nociceptor activation. In support of this, intraplantar GLU+LY produced heat hyperalgesia, and exogenous GLU + LY applied to nociceptors produced enhanced nociceptor activity and thermal sensitization. Intraplantar Formalin, known to elevate extracellular GLU, enhanced pain behaviors in the presence of LY. LY alone produced no pain behaviors, no change in nociceptor discharge rate or heat-evoked responses, and no change in cytosolic Ca2+inDRGcells, demonstrating a lack of tonic inhibitory control. Group II/III mGluRs maintain an activity-dependent autoinhibition, capable of significantly reducing TRPV1-induced activity. They are endogenously activated after high-frequency and/or prolonged nociceptor stimulation, acting as built-in negative modulators of TRPV1 and nociceptor function, reducing pain transmission to the CNS.

UR - http://www.scopus.com/inward/record.url?scp=80052567020&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052567020&partnerID=8YFLogxK

U2 - 10.1523/JNEUROSCI.6558-10.2011

DO - 10.1523/JNEUROSCI.6558-10.2011

M3 - Article

C2 - 21900552

AN - SCOPUS:80052567020

VL - 31

SP - 12727

EP - 12737

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 36

ER -