Hospital length of stay following radical cystectomy for muscle-invasive bladder cancer: Development and validation of a population-based prediction model

Mohamed Ray-Zack, Yong Shan, Hemalkumar Mehta, Xiaoying Yu, Ashish M. Kamat, Stephen Williams

Research output: Contribution to journalArticle

Abstract

Objective: Length of hospital stay for patients following radical cystectomy is an important determinant for improved quality of care. We sought to develop and validate a predictive model for length of hospital stay following radical cystectomy. Methods: Patients aged 66 to 90 years diagnosed with clinical stage T2-4a muscle-invasive bladder cancer who underwent radical cystectomy were included from January 1, 2002 through December 31, 2011 using the Surveillance, Epidemiology, and End Results (SEER)-Medicare data. Linear regression analyses were used to develop and validate a predictive model for length of hospital stay. Results: A total of 2,448 patients met inclusion criteria. After random assignment, 1,224 patients were included in the discovery cohort and 1,224 patients included in the validation cohort. The cohorts were well balanced with no significant difference in any of the preoperative variables. A best model was developed using marital status, Surveillance, Epidemiology, and End Results (SEER) region, clinical stage, Charlson comorbidity index, logarithm of hospital cystectomy volume, and use of neoadjuvant chemotherapy in a backward selection to predict the length of stay. There was robust internal validation (sum square error (SSE): 258.1 vs. predicted sum of squares (PRESS): 264.0 at SLS = 0.10), consistent with the external validation (average square error (ASE): discovery (0.248) vs. validation (0.258)) cohort. The strength of the model in predicting length of stay for the entire cohort was (R2 = 0.048). Conclusion: In this large population-based study, we developed and validated a model to predict length of hospital stay following radical cystectomy. Identification of at-risk patients for prolonged hospital stay may aid in targeted interventions to reduce length of stay, improve quality of care, and decrease healthcare costs.

Original languageEnglish (US)
JournalUrologic Oncology: Seminars and Original Investigations
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

Cystectomy
Urinary Bladder Neoplasms
Length of Stay
Muscles
Population
Quality of Health Care
Epidemiology
Marital Status
Medicare
Health Care Costs
Comorbidity
Linear Models
Regression Analysis

Keywords

  • Bladder cancer
  • Hospital stay
  • Model
  • Prediction
  • Radical cystectomy
  • SEER

ASJC Scopus subject areas

  • Oncology
  • Urology

Cite this

@article{5f279158affb473cab7e18f9c58c7d5f,
title = "Hospital length of stay following radical cystectomy for muscle-invasive bladder cancer: Development and validation of a population-based prediction model",
abstract = "Objective: Length of hospital stay for patients following radical cystectomy is an important determinant for improved quality of care. We sought to develop and validate a predictive model for length of hospital stay following radical cystectomy. Methods: Patients aged 66 to 90 years diagnosed with clinical stage T2-4a muscle-invasive bladder cancer who underwent radical cystectomy were included from January 1, 2002 through December 31, 2011 using the Surveillance, Epidemiology, and End Results (SEER)-Medicare data. Linear regression analyses were used to develop and validate a predictive model for length of hospital stay. Results: A total of 2,448 patients met inclusion criteria. After random assignment, 1,224 patients were included in the discovery cohort and 1,224 patients included in the validation cohort. The cohorts were well balanced with no significant difference in any of the preoperative variables. A best model was developed using marital status, Surveillance, Epidemiology, and End Results (SEER) region, clinical stage, Charlson comorbidity index, logarithm of hospital cystectomy volume, and use of neoadjuvant chemotherapy in a backward selection to predict the length of stay. There was robust internal validation (sum square error (SSE): 258.1 vs. predicted sum of squares (PRESS): 264.0 at SLS = 0.10), consistent with the external validation (average square error (ASE): discovery (0.248) vs. validation (0.258)) cohort. The strength of the model in predicting length of stay for the entire cohort was (R2 = 0.048). Conclusion: In this large population-based study, we developed and validated a model to predict length of hospital stay following radical cystectomy. Identification of at-risk patients for prolonged hospital stay may aid in targeted interventions to reduce length of stay, improve quality of care, and decrease healthcare costs.",
keywords = "Bladder cancer, Hospital stay, Model, Prediction, Radical cystectomy, SEER",
author = "Mohamed Ray-Zack and Yong Shan and Hemalkumar Mehta and Xiaoying Yu and Kamat, {Ashish M.} and Stephen Williams",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.urolonc.2018.10.024",
language = "English (US)",
journal = "Urologic Oncology",
issn = "1078-1439",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Hospital length of stay following radical cystectomy for muscle-invasive bladder cancer

T2 - Development and validation of a population-based prediction model

AU - Ray-Zack, Mohamed

AU - Shan, Yong

AU - Mehta, Hemalkumar

AU - Yu, Xiaoying

AU - Kamat, Ashish M.

AU - Williams, Stephen

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Objective: Length of hospital stay for patients following radical cystectomy is an important determinant for improved quality of care. We sought to develop and validate a predictive model for length of hospital stay following radical cystectomy. Methods: Patients aged 66 to 90 years diagnosed with clinical stage T2-4a muscle-invasive bladder cancer who underwent radical cystectomy were included from January 1, 2002 through December 31, 2011 using the Surveillance, Epidemiology, and End Results (SEER)-Medicare data. Linear regression analyses were used to develop and validate a predictive model for length of hospital stay. Results: A total of 2,448 patients met inclusion criteria. After random assignment, 1,224 patients were included in the discovery cohort and 1,224 patients included in the validation cohort. The cohorts were well balanced with no significant difference in any of the preoperative variables. A best model was developed using marital status, Surveillance, Epidemiology, and End Results (SEER) region, clinical stage, Charlson comorbidity index, logarithm of hospital cystectomy volume, and use of neoadjuvant chemotherapy in a backward selection to predict the length of stay. There was robust internal validation (sum square error (SSE): 258.1 vs. predicted sum of squares (PRESS): 264.0 at SLS = 0.10), consistent with the external validation (average square error (ASE): discovery (0.248) vs. validation (0.258)) cohort. The strength of the model in predicting length of stay for the entire cohort was (R2 = 0.048). Conclusion: In this large population-based study, we developed and validated a model to predict length of hospital stay following radical cystectomy. Identification of at-risk patients for prolonged hospital stay may aid in targeted interventions to reduce length of stay, improve quality of care, and decrease healthcare costs.

AB - Objective: Length of hospital stay for patients following radical cystectomy is an important determinant for improved quality of care. We sought to develop and validate a predictive model for length of hospital stay following radical cystectomy. Methods: Patients aged 66 to 90 years diagnosed with clinical stage T2-4a muscle-invasive bladder cancer who underwent radical cystectomy were included from January 1, 2002 through December 31, 2011 using the Surveillance, Epidemiology, and End Results (SEER)-Medicare data. Linear regression analyses were used to develop and validate a predictive model for length of hospital stay. Results: A total of 2,448 patients met inclusion criteria. After random assignment, 1,224 patients were included in the discovery cohort and 1,224 patients included in the validation cohort. The cohorts were well balanced with no significant difference in any of the preoperative variables. A best model was developed using marital status, Surveillance, Epidemiology, and End Results (SEER) region, clinical stage, Charlson comorbidity index, logarithm of hospital cystectomy volume, and use of neoadjuvant chemotherapy in a backward selection to predict the length of stay. There was robust internal validation (sum square error (SSE): 258.1 vs. predicted sum of squares (PRESS): 264.0 at SLS = 0.10), consistent with the external validation (average square error (ASE): discovery (0.248) vs. validation (0.258)) cohort. The strength of the model in predicting length of stay for the entire cohort was (R2 = 0.048). Conclusion: In this large population-based study, we developed and validated a model to predict length of hospital stay following radical cystectomy. Identification of at-risk patients for prolonged hospital stay may aid in targeted interventions to reduce length of stay, improve quality of care, and decrease healthcare costs.

KW - Bladder cancer

KW - Hospital stay

KW - Model

KW - Prediction

KW - Radical cystectomy

KW - SEER

UR - http://www.scopus.com/inward/record.url?scp=85056330686&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056330686&partnerID=8YFLogxK

U2 - 10.1016/j.urolonc.2018.10.024

DO - 10.1016/j.urolonc.2018.10.024

M3 - Article

AN - SCOPUS:85056330686

JO - Urologic Oncology

JF - Urologic Oncology

SN - 1078-1439

ER -