TY - JOUR
T1 - Human epidermal growth factor receptor 2 status modulates subcellular localization of and interaction with estrogen receptor α in breast cancer cells
AU - Yang, Zhibo
AU - Barnes, Christopher J.
AU - Kumar, Rakesh
PY - 2004/6/1
Y1 - 2004/6/1
N2 - Purpose: Approximately two-thirds of breast cancer patients respond to endocrine therapy, and this population of patients is estrogen receptor (ER) positive. However, a significant proportion of patients do not respond to hormone therapy. ER hormone responsiveness is widely believed to be influenced by enhanced cross-talk of ER with overexpressed human epidermal growth factor receptor 2 (HER2), and a subgroup of ER-positive tumors coexpress high HER2. Experimental Design: Breast cancer cells with or without HER2 overexpression were analyzed for ER status, subcellular localization, and interactions with HER2 signaling components by biochemical and immunological methods. Experiments explored the regulatory interactions between the HER2 and ER pathways and the sensitivity of breast cancer cells to tamoxifen. Results: Stable or transient or natural HER2 overexpression in ER-positive breast cancer cells promoted the nucleus-to-cytoplasm relocalization of ER, enhanced interactions of ER with HER2, inhibited ER transactivation function, and induced resistance to tamoxifen-mediated growth inhibition of breast cancer cells. In addition, HER2 up-regulation resulted in ER interaction with Sos, a component of Ras signaling, and hyperstimulation of the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2). Conversely, down-regulation of HER2 by the anti-HER2 monoclonal antibody Herceptin led to suppression of ERK1/2 stimulation, restoration of ER to the nucleus, and potentiation of the growth-inhibitory action of tamoxifen. Conclusion: The results presented here show for the first time that ER redistribution to the cytoplasm and its interaction with HER2 are important downstream effects of HER2 overexpression, that ERK1/2 is important for ER cytoplasmic localization, and that subcellular localization of ER may play a mechanistic role in determining the responsiveness of breast cancer cells to tamoxifen.
AB - Purpose: Approximately two-thirds of breast cancer patients respond to endocrine therapy, and this population of patients is estrogen receptor (ER) positive. However, a significant proportion of patients do not respond to hormone therapy. ER hormone responsiveness is widely believed to be influenced by enhanced cross-talk of ER with overexpressed human epidermal growth factor receptor 2 (HER2), and a subgroup of ER-positive tumors coexpress high HER2. Experimental Design: Breast cancer cells with or without HER2 overexpression were analyzed for ER status, subcellular localization, and interactions with HER2 signaling components by biochemical and immunological methods. Experiments explored the regulatory interactions between the HER2 and ER pathways and the sensitivity of breast cancer cells to tamoxifen. Results: Stable or transient or natural HER2 overexpression in ER-positive breast cancer cells promoted the nucleus-to-cytoplasm relocalization of ER, enhanced interactions of ER with HER2, inhibited ER transactivation function, and induced resistance to tamoxifen-mediated growth inhibition of breast cancer cells. In addition, HER2 up-regulation resulted in ER interaction with Sos, a component of Ras signaling, and hyperstimulation of the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2). Conversely, down-regulation of HER2 by the anti-HER2 monoclonal antibody Herceptin led to suppression of ERK1/2 stimulation, restoration of ER to the nucleus, and potentiation of the growth-inhibitory action of tamoxifen. Conclusion: The results presented here show for the first time that ER redistribution to the cytoplasm and its interaction with HER2 are important downstream effects of HER2 overexpression, that ERK1/2 is important for ER cytoplasmic localization, and that subcellular localization of ER may play a mechanistic role in determining the responsiveness of breast cancer cells to tamoxifen.
UR - http://www.scopus.com/inward/record.url?scp=2542620761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2542620761&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-0740-3
DO - 10.1158/1078-0432.CCR-0740-3
M3 - Article
C2 - 15173068
AN - SCOPUS:2542620761
SN - 1078-0432
VL - 10
SP - 3621
EP - 3628
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 11
ER -