TY - JOUR
T1 - Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function
AU - Suzuki, Kunihiro
AU - Olah, Gabor
AU - Modis, Katalin
AU - Coletta, Ciro
AU - Kulp, Gabriella
AU - Gerö, Domokos
AU - Szoleczky, Petra
AU - Chang, Tuanjie
AU - Zhou, Zongmin
AU - Wu, Lingyun
AU - Wang, Rui
AU - Papapetropoulos, Andreas
AU - Szabo, Csaba
PY - 2011/8/16
Y1 - 2011/8/16
N2 - The goal of the present studies was to investigate the role of Changes in hydrogen sulfide (H 2S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H 2S. Replacement of H 2S or overexpression of the H 2S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H 2S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H 2S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE -/- mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H 2S; replacement of H 2S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H 2S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H 2S catabolismform a positive feed-forward cycle. H 2S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.
AB - The goal of the present studies was to investigate the role of Changes in hydrogen sulfide (H 2S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H 2S. Replacement of H 2S or overexpression of the H 2S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H 2S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H 2S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE -/- mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H 2S; replacement of H 2S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H 2S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H 2S catabolismform a positive feed-forward cycle. H 2S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.
UR - http://www.scopus.com/inward/record.url?scp=80051978779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051978779&partnerID=8YFLogxK
U2 - 10.1073/pnas.1105121108
DO - 10.1073/pnas.1105121108
M3 - Article
C2 - 21808008
AN - SCOPUS:80051978779
SN - 0027-8424
VL - 108
SP - 13829
EP - 13834
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 33
ER -