TY - JOUR
T1 - Hypotension and inflammatory cytokine gene expression triggered by factor Xa-nitric oxide signaling
AU - Papapetropoulos, Andreas
AU - Piccardoni, Paola
AU - Cirino, Giuseppe
AU - Bucci, Mariarosaria
AU - Sorrentino, Raffaella
AU - Cicala, Carla
AU - Johnson, Kirk
AU - Zachariou, Venetia
AU - Sessa, William C.
AU - Altieri, Dario C.
PY - 1998/4/14
Y1 - 1998/4/14
N2 - The signaling pathway initiated by factor Xa on vascular endothelial cells was investigated. Factor Xa stimulated a 5- to 10-fold increased release of nitric oxide (NO) in a dose-dependent reaction (0.1-2.5 μg/ml) unaffected by the thrombin inhibitor hirudin but abolished by active site inhibitors, tick anticoagulant peptide, or Glu-Gly-Arg-chloromethyl ketone. In contrast, the homologous clotting protease factor IXa or another endothelial cell ligand, fibrinogen, was ineffective. A factor Xa inter- epidermal growth factor synthetic peptide L83FTRKL88(G) blocking ligand binding to effector cell protease receptor-1 inhibited NO release by factor Xa in a dose-dependent manner, whereas a control scrambled peptide KFTGRLL was ineffective. Catalytically active factor Xa induced hypotension in rats and vasorelaxation in the isolated rat mesentery, which was blocked by the NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) but not by D- NAME. Factor Xa/NO signaling also produced a dose-dependent endothelial cell release of interleukin 6 (range 0.55-3.1 ng/ml) in a reaction inhibited by L- NAME and by the inter-epidermal growth factor peptide Leu83-Leu88 but unaffected by hirudin. Maximal induction of interleukin 6 mRNA required a brief, 30-min stimulation with factor Xa, unaffected by subsequent addition of tissue factor-pathway inhibitor. These data suggest that factor Xa- induced NO release modulates endothelial cell-dependent vasorelaxation and cytokine gene expression. This pathway requiring factor Xa binding to effector cell protease receptor-1 and a secondary step of ligand-dependent proteolysis may preserve an anti-thrombotic phenotype of endothelium but also trigger acute phase responses during activation of coagulation in vivo.
AB - The signaling pathway initiated by factor Xa on vascular endothelial cells was investigated. Factor Xa stimulated a 5- to 10-fold increased release of nitric oxide (NO) in a dose-dependent reaction (0.1-2.5 μg/ml) unaffected by the thrombin inhibitor hirudin but abolished by active site inhibitors, tick anticoagulant peptide, or Glu-Gly-Arg-chloromethyl ketone. In contrast, the homologous clotting protease factor IXa or another endothelial cell ligand, fibrinogen, was ineffective. A factor Xa inter- epidermal growth factor synthetic peptide L83FTRKL88(G) blocking ligand binding to effector cell protease receptor-1 inhibited NO release by factor Xa in a dose-dependent manner, whereas a control scrambled peptide KFTGRLL was ineffective. Catalytically active factor Xa induced hypotension in rats and vasorelaxation in the isolated rat mesentery, which was blocked by the NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) but not by D- NAME. Factor Xa/NO signaling also produced a dose-dependent endothelial cell release of interleukin 6 (range 0.55-3.1 ng/ml) in a reaction inhibited by L- NAME and by the inter-epidermal growth factor peptide Leu83-Leu88 but unaffected by hirudin. Maximal induction of interleukin 6 mRNA required a brief, 30-min stimulation with factor Xa, unaffected by subsequent addition of tissue factor-pathway inhibitor. These data suggest that factor Xa- induced NO release modulates endothelial cell-dependent vasorelaxation and cytokine gene expression. This pathway requiring factor Xa binding to effector cell protease receptor-1 and a secondary step of ligand-dependent proteolysis may preserve an anti-thrombotic phenotype of endothelium but also trigger acute phase responses during activation of coagulation in vivo.
UR - http://www.scopus.com/inward/record.url?scp=13144262813&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=13144262813&partnerID=8YFLogxK
U2 - 10.1073/pnas.95.8.4738
DO - 10.1073/pnas.95.8.4738
M3 - Article
C2 - 9539808
AN - SCOPUS:13144262813
SN - 0027-8424
VL - 95
SP - 4738
EP - 4742
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 8
ER -