Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease

S. M. Chen, J. S. Dumler, J. S. Bakken, David Walker

Research output: Contribution to journalArticle

760 Citations (Scopus)

Abstract

Six patients from northern Minnesota and Wisconsin with a febrile illness accompanied by granulocytic cytoplasmic morulae suggestive of ehrlichial infection were identified. Two patients died, and splenic granulocytes of one patient contained cytoplasmic vacuoles with organisms ultrastructurally characteristic of ehrlichiae. From one patient, a 1.5-kb DNA product was amplified by PCR with universal eubacterial primers of 16S rDNA. Analysis of the nucleotide sequence of the amplified product revealed 99.9 and 99.8% similarities with E. phagocytophila and E. equi, respectively, neither of which has previously been known to infect humans. From the variable regions of the determined sequence, a forward primer specific for three organisms (human granulocytic ehrlichia, E. phagocytophila, and E. equi) and a reverse primer for these ehrlichiae and E. platys were designed. By nested PCR with amplification by the universal primers and then reamplification with the specific primers described above, the expected 919-bp product was generated from the blood of the index patient and three additional patients. Blood from these four patients and two more patients with granulocytic morulae contained DNA which was amplified by nested PCR involving a combination of a universal primer and the human granulocytic ehrlichia-E. phagocytophila-E. equi-E. platys group-specific primer. This apparently vector-borne human granulocytic ehrlichia has only 92.5% 16S rDNA homology with E. chaffeensis. Nested PCR with group-specific primers did not amplify E. chaffeensis DNA, and E. chaffeensis-specific primers did not amplify DNAs of the human granulocytic ehrlichia. Thus, six patients were shown to be infected by an Ehrlichia species never previously reported to infect humans.

Original languageEnglish (US)
Pages (from-to)589-595
Number of pages7
JournalJournal of Clinical Microbiology
Volume32
Issue number3
StatePublished - 1994

Fingerprint

Ehrlichia
Anaplasma phagocytophilum
Morula
Polymerase Chain Reaction
DNA
Ribosomal DNA
Vacuoles
Granulocytes
Fever

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Cite this

Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. / Chen, S. M.; Dumler, J. S.; Bakken, J. S.; Walker, David.

In: Journal of Clinical Microbiology, Vol. 32, No. 3, 1994, p. 589-595.

Research output: Contribution to journalArticle

@article{2bffdeaec5f2440a8330f042e6985a90,
title = "Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease",
abstract = "Six patients from northern Minnesota and Wisconsin with a febrile illness accompanied by granulocytic cytoplasmic morulae suggestive of ehrlichial infection were identified. Two patients died, and splenic granulocytes of one patient contained cytoplasmic vacuoles with organisms ultrastructurally characteristic of ehrlichiae. From one patient, a 1.5-kb DNA product was amplified by PCR with universal eubacterial primers of 16S rDNA. Analysis of the nucleotide sequence of the amplified product revealed 99.9 and 99.8{\%} similarities with E. phagocytophila and E. equi, respectively, neither of which has previously been known to infect humans. From the variable regions of the determined sequence, a forward primer specific for three organisms (human granulocytic ehrlichia, E. phagocytophila, and E. equi) and a reverse primer for these ehrlichiae and E. platys were designed. By nested PCR with amplification by the universal primers and then reamplification with the specific primers described above, the expected 919-bp product was generated from the blood of the index patient and three additional patients. Blood from these four patients and two more patients with granulocytic morulae contained DNA which was amplified by nested PCR involving a combination of a universal primer and the human granulocytic ehrlichia-E. phagocytophila-E. equi-E. platys group-specific primer. This apparently vector-borne human granulocytic ehrlichia has only 92.5{\%} 16S rDNA homology with E. chaffeensis. Nested PCR with group-specific primers did not amplify E. chaffeensis DNA, and E. chaffeensis-specific primers did not amplify DNAs of the human granulocytic ehrlichia. Thus, six patients were shown to be infected by an Ehrlichia species never previously reported to infect humans.",
author = "Chen, {S. M.} and Dumler, {J. S.} and Bakken, {J. S.} and David Walker",
year = "1994",
language = "English (US)",
volume = "32",
pages = "589--595",
journal = "Journal of Clinical Microbiology",
issn = "0095-1137",
publisher = "American Society for Microbiology",
number = "3",

}

TY - JOUR

T1 - Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease

AU - Chen, S. M.

AU - Dumler, J. S.

AU - Bakken, J. S.

AU - Walker, David

PY - 1994

Y1 - 1994

N2 - Six patients from northern Minnesota and Wisconsin with a febrile illness accompanied by granulocytic cytoplasmic morulae suggestive of ehrlichial infection were identified. Two patients died, and splenic granulocytes of one patient contained cytoplasmic vacuoles with organisms ultrastructurally characteristic of ehrlichiae. From one patient, a 1.5-kb DNA product was amplified by PCR with universal eubacterial primers of 16S rDNA. Analysis of the nucleotide sequence of the amplified product revealed 99.9 and 99.8% similarities with E. phagocytophila and E. equi, respectively, neither of which has previously been known to infect humans. From the variable regions of the determined sequence, a forward primer specific for three organisms (human granulocytic ehrlichia, E. phagocytophila, and E. equi) and a reverse primer for these ehrlichiae and E. platys were designed. By nested PCR with amplification by the universal primers and then reamplification with the specific primers described above, the expected 919-bp product was generated from the blood of the index patient and three additional patients. Blood from these four patients and two more patients with granulocytic morulae contained DNA which was amplified by nested PCR involving a combination of a universal primer and the human granulocytic ehrlichia-E. phagocytophila-E. equi-E. platys group-specific primer. This apparently vector-borne human granulocytic ehrlichia has only 92.5% 16S rDNA homology with E. chaffeensis. Nested PCR with group-specific primers did not amplify E. chaffeensis DNA, and E. chaffeensis-specific primers did not amplify DNAs of the human granulocytic ehrlichia. Thus, six patients were shown to be infected by an Ehrlichia species never previously reported to infect humans.

AB - Six patients from northern Minnesota and Wisconsin with a febrile illness accompanied by granulocytic cytoplasmic morulae suggestive of ehrlichial infection were identified. Two patients died, and splenic granulocytes of one patient contained cytoplasmic vacuoles with organisms ultrastructurally characteristic of ehrlichiae. From one patient, a 1.5-kb DNA product was amplified by PCR with universal eubacterial primers of 16S rDNA. Analysis of the nucleotide sequence of the amplified product revealed 99.9 and 99.8% similarities with E. phagocytophila and E. equi, respectively, neither of which has previously been known to infect humans. From the variable regions of the determined sequence, a forward primer specific for three organisms (human granulocytic ehrlichia, E. phagocytophila, and E. equi) and a reverse primer for these ehrlichiae and E. platys were designed. By nested PCR with amplification by the universal primers and then reamplification with the specific primers described above, the expected 919-bp product was generated from the blood of the index patient and three additional patients. Blood from these four patients and two more patients with granulocytic morulae contained DNA which was amplified by nested PCR involving a combination of a universal primer and the human granulocytic ehrlichia-E. phagocytophila-E. equi-E. platys group-specific primer. This apparently vector-borne human granulocytic ehrlichia has only 92.5% 16S rDNA homology with E. chaffeensis. Nested PCR with group-specific primers did not amplify E. chaffeensis DNA, and E. chaffeensis-specific primers did not amplify DNAs of the human granulocytic ehrlichia. Thus, six patients were shown to be infected by an Ehrlichia species never previously reported to infect humans.

UR - http://www.scopus.com/inward/record.url?scp=0028047345&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028047345&partnerID=8YFLogxK

M3 - Article

VL - 32

SP - 589

EP - 595

JO - Journal of Clinical Microbiology

JF - Journal of Clinical Microbiology

SN - 0095-1137

IS - 3

ER -