Abstract
Axoplasm from the squid giant axon contains a soluble protein translocator that induces movement of microtubules on glass, latex beads on microtubules, and axoplasmic organelles on microtubules. We now report the partial purification of a protein from squid giant axons and optic lobes that induces these microtubule-based movements and show that there is a homologous protein in bovine brain. The purification of the translocator protein depends primarily on its unusual property of forming a high affinity complex with microtubuies in the presence of a nonhydrolyzable ATP analog, adenylyl imidodiphosphate. The protein, once released from microtubuies with ATP, migrates on gel filtration columns with an apparent molecular weight of 600 kilodaltons and contains 110-120 and 60-70 kilodalton polypeptides. This protein is distinct in molecular weight and enzymatic behavior from myosin or dynein, which suggests that it belongs to a novel class of force-generating molecules, for which we propose the name kinesin.
Original language | English (US) |
---|---|
Pages (from-to) | 39-50 |
Number of pages | 12 |
Journal | Cell |
Volume | 42 |
Issue number | 1 |
DOIs | |
State | Published - Aug 1985 |
Externally published | Yes |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology