TY - JOUR
T1 - IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection
AU - Carpio, Victor H.
AU - Opata, Michael M.
AU - Montañez, Marelle E.
AU - Banerjee, Pinaki P.
AU - Dent, Alexander L.
AU - Stephens, Robin
N1 - Publisher Copyright:
© 2015 Carpio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL- 21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineageassociated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+IFN-γ+IL- 21+IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+IL-21+CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an effective malaria vaccine.
AB - CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL- 21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineageassociated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+IFN-γ+IL- 21+IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+IL-21+CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an effective malaria vaccine.
UR - http://www.scopus.com/inward/record.url?scp=84955573900&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84955573900&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0144654
DO - 10.1371/journal.pone.0144654
M3 - Article
C2 - 26646149
AN - SCOPUS:84955573900
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 12
M1 - e0144654
ER -