Abstract
Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P < 0.05) in type I (15%) and type II (17%) myofiber cross-sectional areas were found in NoEx but not in REx. Electrophoresis revealed no changes in MI-IC isoform distribution. The percentage of type IIx myofibers decreased (P < 0.05) in REx from 9 to 2% and did not change in NoEx. 1 RM was reduced (P < 0.05) by 9% in NoEx but was unchanged in REx. MVC fell by 15 and 13% in NoEx and REx, respectively. The agonist-to-antagonist root mean squared electromyogram ratio decreased (P < 0.05) 19% in REx. RTD slowed (P < 0.05) by 54% in NoEx only. Results indicate that REx prevented BRU-induced myofiber atrophy and also maintained training- specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.
Original language | English (US) |
---|---|
Pages (from-to) | 157-163 |
Number of pages | 7 |
Journal | Journal of Applied Physiology |
Volume | 84 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1998 |
Externally published | Yes |
Keywords
- Immunohistochemistry
- Muscle atrophy
- Neural activation
- Spaceflight
- Strength
- Unloading
ASJC Scopus subject areas
- Physiology
- Endocrinology
- Orthopedics and Sports Medicine
- Physical Therapy, Sports Therapy and Rehabilitation