In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging

Elena V. Petrova, Massoud Motamedi, Alexander A. Oraevskya, Sergey A. Ermilov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Cryoablation of prostate cancer is an FDA approved clinical procedure, which involves repetitive rapid cooling of a lesion to lethal temperatures of-40°C and below. The major drawback of the technique is the insufficient control over the fast thermal processes that may result in severe complications (impotence, incontinence, perforation of the rectal wall) and morbidity. The developed optoacoustic imaging technique provides non-invasive real-time temperature mapping of tissue adjacent to prostate and enables more efficient control over the procedure, which is necessary to reduce side effects and accelerate the physician's learning curve. In these studies we successfully demonstrated real-time transrectal optoacoustic imaging during prostate cryoablation in live canine model focused on optoacoustic thermography of the rectal wall within the depth of 1cm. Our method utilized previously discovered universal thermal dependence of the normalized optoacoustic response of blood. Nanosecond-pulse radiation of Ti-Sapphire laser tuned to the isosbestic point of hemoglobin (802±3 nm) was delivered via fiberoptic illuminators assembled on both sides of the linear array of the 128-channel transrectal ultrasound probe. Temperature readouts at discrete locations inside and nearby prostate were also performed using standard transperineal needle sensors. The effect of homeostasis on optoacoustic imaging in live tissue was examined during cooling and shown to be significant only within the range of ±1.5°C in respect to the body temperature. Accuracy of in vivo optoacoustic temperature measurements was determined as ±2°C for the range of temperature from +35 to-15°C, which is more than sufficient for tracking the essential isotherms in the course of clinical procedures.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2016
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781628419429
DOIs
StatePublished - 2016
EventPhotons Plus Ultrasound: Imaging and Sensing 2016 - San Francisco, United States
Duration: Feb 14 2016Feb 17 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9708
ISSN (Print)1605-7422

Other

OtherPhotons Plus Ultrasound: Imaging and Sensing 2016
Country/TerritoryUnited States
CitySan Francisco
Period2/14/162/17/16

Keywords

  • blood
  • cryotherapy
  • non-invasive
  • optoacoustics imaging
  • photoacoustic tomography
  • prostate
  • temperature monitoring

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'In vivo cryoablation of prostate tissue with temperature monitoring by optoacoustic imaging'. Together they form a unique fingerprint.

Cite this