TY - JOUR
T1 - Induction of Covalent DNA Modifications and Micronucleated Erythrocytes by 4-Nitroquinoline 1-Oxide in Adult and Fetal Mice
AU - Lu, Lee Jane W.
AU - Baxter, Jennifer R.
AU - Wang, Mian Ying
AU - Harper, Barbara L.
AU - Tasaka, Fumiyo
AU - Kohda, Kohfuku
N1 - Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 1990/10/15
Y1 - 1990/10/15
N2 - Pregnancy and development are known to modify carcinogenesis. Little is known about the mechanism for the modulation. These studies investigated the relative sensitivity of nonpregnant, pregnant, and fetal mice to the induction of covalent DNA modifications and micronucleated erythrocytes by 4-nitroquinoline 1-oxide (4-NQO). Our results revealed that 4-NQO was bound to guanine nucleotides of DNA in all maternal and fetal organs tested. The adduct levels ranged from 2–60 base modifications per 109 DNA bases when 4-NQO was administered s.c. Overall, 4-NQO bound preferentially to DNA of the maternal tissues compared with that of the corresponding fetal tissues, with the exception of the liver. The adduct levels in maternal and fetal organs fell into 3 distinct levels. The greatest binding was in maternal lungs and pancreas (the target organs for carcinogenesis). The lowest binding levels were in maternal liver and all fetal organs studied. Gestation age at the time of 4-NQO treatment did not produce a significant effect on the amounts of adduct formation in the tissues examined, with the exception of placenta and bone marrow. Chronic treatment did not affect binding preference. At the cellular level, 4-NQO treatment induced twice the frequency of micronucleated erythrocytes in the bone marrow of pregnant mice compared with the nonpregnant mice and fetal liver, on a mg/kg basis. However, the polychromatic erythrocytes of fetal liver were more sensitive than those of adult bone marrow to the induction of micronuclei, when adduct levels were taken into account. A positive correlation of organotropsim between 4-NQO-induced DNA adducts and carcinogenicity was observed for maternal tissues, but not for fetal tissues. Fetal tissues, overall, lack the enzymes to metabolically activate 4-NQO. Fetal cells elicit greater biological responses, compared with adult cells, at equal adduct levels. This study reveals that the effective doses in maternal and fetal tissues may differ and, therefore, will be a better basis for further understanding the molecular mechanism of transplacental carcinogenesis.
AB - Pregnancy and development are known to modify carcinogenesis. Little is known about the mechanism for the modulation. These studies investigated the relative sensitivity of nonpregnant, pregnant, and fetal mice to the induction of covalent DNA modifications and micronucleated erythrocytes by 4-nitroquinoline 1-oxide (4-NQO). Our results revealed that 4-NQO was bound to guanine nucleotides of DNA in all maternal and fetal organs tested. The adduct levels ranged from 2–60 base modifications per 109 DNA bases when 4-NQO was administered s.c. Overall, 4-NQO bound preferentially to DNA of the maternal tissues compared with that of the corresponding fetal tissues, with the exception of the liver. The adduct levels in maternal and fetal organs fell into 3 distinct levels. The greatest binding was in maternal lungs and pancreas (the target organs for carcinogenesis). The lowest binding levels were in maternal liver and all fetal organs studied. Gestation age at the time of 4-NQO treatment did not produce a significant effect on the amounts of adduct formation in the tissues examined, with the exception of placenta and bone marrow. Chronic treatment did not affect binding preference. At the cellular level, 4-NQO treatment induced twice the frequency of micronucleated erythrocytes in the bone marrow of pregnant mice compared with the nonpregnant mice and fetal liver, on a mg/kg basis. However, the polychromatic erythrocytes of fetal liver were more sensitive than those of adult bone marrow to the induction of micronuclei, when adduct levels were taken into account. A positive correlation of organotropsim between 4-NQO-induced DNA adducts and carcinogenicity was observed for maternal tissues, but not for fetal tissues. Fetal tissues, overall, lack the enzymes to metabolically activate 4-NQO. Fetal cells elicit greater biological responses, compared with adult cells, at equal adduct levels. This study reveals that the effective doses in maternal and fetal tissues may differ and, therefore, will be a better basis for further understanding the molecular mechanism of transplacental carcinogenesis.
UR - http://www.scopus.com/inward/record.url?scp=0025102951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025102951&partnerID=8YFLogxK
M3 - Article
C2 - 2119250
AN - SCOPUS:0025102951
SN - 0008-5472
VL - 50
SP - 6192
EP - 6198
JO - Cancer Research
JF - Cancer Research
IS - 19
ER -