Induction of long-Term potentiation and long-Term depression is cell-Type specific in the spinal cord

Hee Young Kim, Jaebeom Jun, Jigong Wang, Alice Bittar, Kyungsoon Chung, Jin Mo Chung

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-Term potentiation (LTP) and long-Term depression (LTD) was tested in 2 types of identified DH neurons using wholecell patch-clamp recordings in mouse spinal cord slices. The test stimulus was applied to the sensory fibers to evoke excitatory postsynaptic currents in identified spinothalamic tract neurons (STTn) and GABAergic neurons (GABAn). Afferent conditioning stimulation (ACS) applied to primary afferent fibers with various stimulation parameters induced LTP in STTn but LTD in GABAn, regardless of stimulation parameters. These opposite responses were further confirmed by simultaneous dual patch-clamp recordings of STTn and GABAn from a single spinal cord slice. Both the LTP in STTn and the LTD in GABAn were blocked by an NMDAreceptor antagonist, AP5, or an intracellular Ca2+chelator, BAPTA. Both the pattern and magnitude of intracellular Ca2+after ACS were almost identical between STTn and GABAn based on live-cell calcium imaging. The results suggest that the intense sensory input induces an NMDA receptor-dependent intracellular Ca2+increase in both STTn and GABAn, but produces opposing synaptic plasticity. This study shows that there is cell type specific synaptic plasticity in the spinal DH.

Original languageEnglish (US)
Pages (from-to)618-625
Number of pages8
Issue number4
StatePublished - Apr 1 2015
Externally publishedYes


  • GABA neurons
  • Long-Term depression
  • Long-Term potentiation
  • NMDA receptors
  • Neuropathic pain
  • Spinothalamic tract neurons
  • Synaptic plasticity

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology
  • Anesthesiology and Pain Medicine


Dive into the research topics of 'Induction of long-Term potentiation and long-Term depression is cell-Type specific in the spinal cord'. Together they form a unique fingerprint.

Cite this