Inhalation injury in severely burned children does not augment the systemic inflammatory response

Celeste Finnerty, David Herndon, Marc G. Jeschke

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Introduction: Inhalation injury in combination with a severe thermal injury increases mortality. Alterations in inflammatory mediators, such as cytokines, contribute to the incidence of multi-organ failure and mortality. The aim of the present study was to determine the effect of inhalation injury on cytokine expression in severely burned children. Methods: Thirty severely burned pediatric patients with inhalation injury and 42 severely burned children without inhalation injury were enrolled in the study. Inhalation injury was diagnosed by bronchoscopy during the first operation. Blood was collected within 24 hours of admission and again at five to seven days following admission. Cytokine expression was profiled using multi-plex antibody-coated beads. Significance was accepted at a p value of less than 0.05. Results: The mean percentages of total body surface area burned were 67% ± 4% (56% ± 6%, third-degree burns) in the inhalation injury group and 60% ± 3% (45% ± 3%, third-degree burns) in the non-inhalation injury group (p value not significant [NS]). Mean age was 9 ± 1 years in the inhalation injury group and 8 ± 1 years in the non-inhalation injury group (p value NS). Time from burn to admission in the inhalation injury group was 2 ± 1 days compared to 3 ± 1 days in the non-inhalation injury group (p value NS). Mortalities were 40% in the inhalation injury group and 12% in the non-inhalation injury group (p < 0.05). At the time of admission, serum interleukin (IL)-7 was significantly increased in the non-inhalation injury group, whereas IL-12p70 was significantly increased in the inhalation injury group compared to the non-inhalation injury group (p < 0.05). There were no other significant differences between groups. Five to seven days following admission, all cytokines decreased with no differences between the inhalation injury and non-inhalation injury cohorts. Conclusion: In the present study, we show that an inhalation injury causes alterations in IL-7 and IL-12p70. There were no increased levels of pro-inflammatory cytokines, indicating that an inhalation injury in addition to a burn injury does not augment the systemic inflammatory response early after burn.

Original languageEnglish (US)
Article numberR22
JournalCritical Care
Volume11
Issue number1
DOIs
StatePublished - Feb 16 2007

Fingerprint

Inhalation
Wounds and Injuries
Cytokines
Interleukin-7
Interleukins
Mortality
Inhalation Burns
Body Surface Area
Bronchoscopy

ASJC Scopus subject areas

  • Critical Care and Intensive Care Medicine
  • Medicine(all)

Cite this

Inhalation injury in severely burned children does not augment the systemic inflammatory response. / Finnerty, Celeste; Herndon, David; Jeschke, Marc G.

In: Critical Care, Vol. 11, No. 1, R22, 16.02.2007.

Research output: Contribution to journalArticle

@article{797be6e72068497199041a8d5d0008f6,
title = "Inhalation injury in severely burned children does not augment the systemic inflammatory response",
abstract = "Introduction: Inhalation injury in combination with a severe thermal injury increases mortality. Alterations in inflammatory mediators, such as cytokines, contribute to the incidence of multi-organ failure and mortality. The aim of the present study was to determine the effect of inhalation injury on cytokine expression in severely burned children. Methods: Thirty severely burned pediatric patients with inhalation injury and 42 severely burned children without inhalation injury were enrolled in the study. Inhalation injury was diagnosed by bronchoscopy during the first operation. Blood was collected within 24 hours of admission and again at five to seven days following admission. Cytokine expression was profiled using multi-plex antibody-coated beads. Significance was accepted at a p value of less than 0.05. Results: The mean percentages of total body surface area burned were 67{\%} ± 4{\%} (56{\%} ± 6{\%}, third-degree burns) in the inhalation injury group and 60{\%} ± 3{\%} (45{\%} ± 3{\%}, third-degree burns) in the non-inhalation injury group (p value not significant [NS]). Mean age was 9 ± 1 years in the inhalation injury group and 8 ± 1 years in the non-inhalation injury group (p value NS). Time from burn to admission in the inhalation injury group was 2 ± 1 days compared to 3 ± 1 days in the non-inhalation injury group (p value NS). Mortalities were 40{\%} in the inhalation injury group and 12{\%} in the non-inhalation injury group (p < 0.05). At the time of admission, serum interleukin (IL)-7 was significantly increased in the non-inhalation injury group, whereas IL-12p70 was significantly increased in the inhalation injury group compared to the non-inhalation injury group (p < 0.05). There were no other significant differences between groups. Five to seven days following admission, all cytokines decreased with no differences between the inhalation injury and non-inhalation injury cohorts. Conclusion: In the present study, we show that an inhalation injury causes alterations in IL-7 and IL-12p70. There were no increased levels of pro-inflammatory cytokines, indicating that an inhalation injury in addition to a burn injury does not augment the systemic inflammatory response early after burn.",
author = "Celeste Finnerty and David Herndon and Jeschke, {Marc G.}",
year = "2007",
month = "2",
day = "16",
doi = "10.1186/cc5698",
language = "English (US)",
volume = "11",
journal = "Critical Care",
issn = "1364-8535",
publisher = "BioMed Central Ltd.",
number = "1",

}

TY - JOUR

T1 - Inhalation injury in severely burned children does not augment the systemic inflammatory response

AU - Finnerty, Celeste

AU - Herndon, David

AU - Jeschke, Marc G.

PY - 2007/2/16

Y1 - 2007/2/16

N2 - Introduction: Inhalation injury in combination with a severe thermal injury increases mortality. Alterations in inflammatory mediators, such as cytokines, contribute to the incidence of multi-organ failure and mortality. The aim of the present study was to determine the effect of inhalation injury on cytokine expression in severely burned children. Methods: Thirty severely burned pediatric patients with inhalation injury and 42 severely burned children without inhalation injury were enrolled in the study. Inhalation injury was diagnosed by bronchoscopy during the first operation. Blood was collected within 24 hours of admission and again at five to seven days following admission. Cytokine expression was profiled using multi-plex antibody-coated beads. Significance was accepted at a p value of less than 0.05. Results: The mean percentages of total body surface area burned were 67% ± 4% (56% ± 6%, third-degree burns) in the inhalation injury group and 60% ± 3% (45% ± 3%, third-degree burns) in the non-inhalation injury group (p value not significant [NS]). Mean age was 9 ± 1 years in the inhalation injury group and 8 ± 1 years in the non-inhalation injury group (p value NS). Time from burn to admission in the inhalation injury group was 2 ± 1 days compared to 3 ± 1 days in the non-inhalation injury group (p value NS). Mortalities were 40% in the inhalation injury group and 12% in the non-inhalation injury group (p < 0.05). At the time of admission, serum interleukin (IL)-7 was significantly increased in the non-inhalation injury group, whereas IL-12p70 was significantly increased in the inhalation injury group compared to the non-inhalation injury group (p < 0.05). There were no other significant differences between groups. Five to seven days following admission, all cytokines decreased with no differences between the inhalation injury and non-inhalation injury cohorts. Conclusion: In the present study, we show that an inhalation injury causes alterations in IL-7 and IL-12p70. There were no increased levels of pro-inflammatory cytokines, indicating that an inhalation injury in addition to a burn injury does not augment the systemic inflammatory response early after burn.

AB - Introduction: Inhalation injury in combination with a severe thermal injury increases mortality. Alterations in inflammatory mediators, such as cytokines, contribute to the incidence of multi-organ failure and mortality. The aim of the present study was to determine the effect of inhalation injury on cytokine expression in severely burned children. Methods: Thirty severely burned pediatric patients with inhalation injury and 42 severely burned children without inhalation injury were enrolled in the study. Inhalation injury was diagnosed by bronchoscopy during the first operation. Blood was collected within 24 hours of admission and again at five to seven days following admission. Cytokine expression was profiled using multi-plex antibody-coated beads. Significance was accepted at a p value of less than 0.05. Results: The mean percentages of total body surface area burned were 67% ± 4% (56% ± 6%, third-degree burns) in the inhalation injury group and 60% ± 3% (45% ± 3%, third-degree burns) in the non-inhalation injury group (p value not significant [NS]). Mean age was 9 ± 1 years in the inhalation injury group and 8 ± 1 years in the non-inhalation injury group (p value NS). Time from burn to admission in the inhalation injury group was 2 ± 1 days compared to 3 ± 1 days in the non-inhalation injury group (p value NS). Mortalities were 40% in the inhalation injury group and 12% in the non-inhalation injury group (p < 0.05). At the time of admission, serum interleukin (IL)-7 was significantly increased in the non-inhalation injury group, whereas IL-12p70 was significantly increased in the inhalation injury group compared to the non-inhalation injury group (p < 0.05). There were no other significant differences between groups. Five to seven days following admission, all cytokines decreased with no differences between the inhalation injury and non-inhalation injury cohorts. Conclusion: In the present study, we show that an inhalation injury causes alterations in IL-7 and IL-12p70. There were no increased levels of pro-inflammatory cytokines, indicating that an inhalation injury in addition to a burn injury does not augment the systemic inflammatory response early after burn.

UR - http://www.scopus.com/inward/record.url?scp=34248227330&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34248227330&partnerID=8YFLogxK

U2 - 10.1186/cc5698

DO - 10.1186/cc5698

M3 - Article

C2 - 17306027

AN - SCOPUS:34248227330

VL - 11

JO - Critical Care

JF - Critical Care

SN - 1364-8535

IS - 1

M1 - R22

ER -