TY - JOUR
T1 - Inhibition of neuronal nitric oxide synthase by 7-nitroindazole attenuates acute lung injury in an ovine model
AU - Enkhbaatar, Perenlei
AU - Murakami, Kazunori
AU - Shimoda, Katsumi
AU - Mizutani, Akio
AU - McGuire, Roy
AU - Schmalstieg, Frank
AU - Cox, Robert
AU - Hawkins, Hal
AU - Jodoin, Jeffery
AU - Lee, Steve
AU - Traber, Lillian
AU - Herndon, David
AU - Traber, Daniel
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Nitric oxide (NO) has been'shown to play a major role in acute lung injury (ALI) after smoke inhalation. In the present study, we developed an ovine sepsis model, created by exposing sheep to smoke inhalation followed by instillation of bacteria into the airway, that mimics human sepsis and pneumonia. We hypothesized that the inhibition of neuronal NO synthase (nNOS) might be beneficial in treating ALI associated with this model. Female sheep (n = 26) were surgically prepared for the study and given a tracheostomy. This was followed by insufflation of 48 breaths of cotton smoke (40°C) into the airway of each animal and subsequent instillation of live Pseudomonas aeruginosa [5 × 1011 colony forming units (CFU)] into each sheep's lung. All sheep were mechanically ventilated using 100% O2. Continuous infusion of 7-nitroindazole (7-NI), an nNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA), a nonspecific NOS inhibitor, or aminoguanidine (AG), an inducible NOS inhibitor, was started 1 h after insult. The administration of 7-NI improved pulmonary gas exchange (PaO2/FIO2; where PaO2 is arterial PO2 and FIO2 is fractional inspired oxygen concentration) and pulmonary shunt fraction and attenuated the increase in lung wet-to-dry weight ratio seen in the nontreated sheep. Histologically, 7-NI prevented airway obstruction. The increase in airway blood flow after injury in the nontreated group was significantly inhibited by 7-NI. The increase in plasma concentration of nitrate and nitrite (NOx) was inhibited by 7-NI as well. Posttreatment with L-NMMA improved the pulmonary gas exchange, but AG did not. The results of the present study show that nNOS may be involved in the pathogenesis of ALI after smoke inhalation injury followed by bacterial instillation in the airway.
AB - Nitric oxide (NO) has been'shown to play a major role in acute lung injury (ALI) after smoke inhalation. In the present study, we developed an ovine sepsis model, created by exposing sheep to smoke inhalation followed by instillation of bacteria into the airway, that mimics human sepsis and pneumonia. We hypothesized that the inhibition of neuronal NO synthase (nNOS) might be beneficial in treating ALI associated with this model. Female sheep (n = 26) were surgically prepared for the study and given a tracheostomy. This was followed by insufflation of 48 breaths of cotton smoke (40°C) into the airway of each animal and subsequent instillation of live Pseudomonas aeruginosa [5 × 1011 colony forming units (CFU)] into each sheep's lung. All sheep were mechanically ventilated using 100% O2. Continuous infusion of 7-nitroindazole (7-NI), an nNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA), a nonspecific NOS inhibitor, or aminoguanidine (AG), an inducible NOS inhibitor, was started 1 h after insult. The administration of 7-NI improved pulmonary gas exchange (PaO2/FIO2; where PaO2 is arterial PO2 and FIO2 is fractional inspired oxygen concentration) and pulmonary shunt fraction and attenuated the increase in lung wet-to-dry weight ratio seen in the nontreated sheep. Histologically, 7-NI prevented airway obstruction. The increase in airway blood flow after injury in the nontreated group was significantly inhibited by 7-NI. The increase in plasma concentration of nitrate and nitrite (NOx) was inhibited by 7-NI as well. Posttreatment with L-NMMA improved the pulmonary gas exchange, but AG did not. The results of the present study show that nNOS may be involved in the pathogenesis of ALI after smoke inhalation injury followed by bacterial instillation in the airway.
KW - Acute respiratory distress syndrome
KW - Pneumonia
KW - Smoke inhalation
UR - http://www.scopus.com/inward/record.url?scp=0041307382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041307382&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00148.2003
DO - 10.1152/ajpregu.00148.2003
M3 - Article
C2 - 12763743
AN - SCOPUS:0041307382
SN - 0363-6119
VL - 285
SP - R366-R372
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 2 54-2
ER -