Innate Immune Responses and Antioxidant/Oxidant Imbalance Are Major Determinants of Human Chagas Disease

Monisha Dhiman, Yun A. Coronado, Cecilia K. Vallejo, John R. Petersen, Adetoun Ejilemele, Sonia Nuñez, Maria Paola Zago, Heidi Spratt, Nisha Garg

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Background:We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease.Methods:Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers.Results:Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56%), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52%) and glutathione (GSH, 75%) contents. Correlation analysis identified a significant (p<0.001) linear relationship between inflammatory markers (AOPP/nitrite: r = 0.877), inflammation and antioxidant/oxidant status (AOPP/glutathione peroxidase (GPX): r = 0.902, AOPP/GSH: r = 0.806, Nitrite/GPX: 0.773, Nitrite/LPO: 0.805, MDA/MPO: 0.718), and antioxidant/oxidant levels (GPX/MDA: r = 0.768) in chagasic subjects. Of these, MPO, LPO and nitrite biomarkers were highly specific and sensitive for distinguishing seropositive/chagasic subjects from seronegative/healthy controls (p<0.001, training and fitting AUC/ROC >0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77% decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels.Conclusions:The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas disease.

Original languageEnglish (US)
Article numbere2364
JournalPLoS Neglected Tropical Diseases
Volume7
Issue number8
DOIs
StatePublished - Aug 2013

Fingerprint

Advanced Oxidation Protein Products
Chagas Disease
Innate Immunity
Oxidants
Antioxidants
Nitrites
Biomarkers
Lipid Peroxides
Creatine Kinase
Transaminases
Malondialdehyde
Pyruvic Acid
Peroxidase
Superoxide Dismutase
Glutathione
Glutamic Acid
Healthy Volunteers
Inflammation
Wounds and Injuries
Serum

ASJC Scopus subject areas

  • Infectious Diseases
  • Public Health, Environmental and Occupational Health
  • Pharmacology, Toxicology and Pharmaceutics(all)

Cite this

Innate Immune Responses and Antioxidant/Oxidant Imbalance Are Major Determinants of Human Chagas Disease. / Dhiman, Monisha; Coronado, Yun A.; Vallejo, Cecilia K.; Petersen, John R.; Ejilemele, Adetoun; Nuñez, Sonia; Zago, Maria Paola; Spratt, Heidi; Garg, Nisha.

In: PLoS Neglected Tropical Diseases, Vol. 7, No. 8, e2364, 08.2013.

Research output: Contribution to journalArticle

Dhiman, Monisha ; Coronado, Yun A. ; Vallejo, Cecilia K. ; Petersen, John R. ; Ejilemele, Adetoun ; Nuñez, Sonia ; Zago, Maria Paola ; Spratt, Heidi ; Garg, Nisha. / Innate Immune Responses and Antioxidant/Oxidant Imbalance Are Major Determinants of Human Chagas Disease. In: PLoS Neglected Tropical Diseases. 2013 ; Vol. 7, No. 8.
@article{eda2b2eb40dc4d53b02109027b7793f8,
title = "Innate Immune Responses and Antioxidant/Oxidant Imbalance Are Major Determinants of Human Chagas Disease",
abstract = "Background:We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease.Methods:Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers.Results:Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56{\%}), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52{\%}) and glutathione (GSH, 75{\%}) contents. Correlation analysis identified a significant (p<0.001) linear relationship between inflammatory markers (AOPP/nitrite: r = 0.877), inflammation and antioxidant/oxidant status (AOPP/glutathione peroxidase (GPX): r = 0.902, AOPP/GSH: r = 0.806, Nitrite/GPX: 0.773, Nitrite/LPO: 0.805, MDA/MPO: 0.718), and antioxidant/oxidant levels (GPX/MDA: r = 0.768) in chagasic subjects. Of these, MPO, LPO and nitrite biomarkers were highly specific and sensitive for distinguishing seropositive/chagasic subjects from seronegative/healthy controls (p<0.001, training and fitting AUC/ROC >0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77{\%} decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels.Conclusions:The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas disease.",
author = "Monisha Dhiman and Coronado, {Yun A.} and Vallejo, {Cecilia K.} and Petersen, {John R.} and Adetoun Ejilemele and Sonia Nu{\~n}ez and Zago, {Maria Paola} and Heidi Spratt and Nisha Garg",
year = "2013",
month = "8",
doi = "10.1371/journal.pntd.0002364",
language = "English (US)",
volume = "7",
journal = "PLoS Neglected Tropical Diseases",
issn = "1935-2727",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - Innate Immune Responses and Antioxidant/Oxidant Imbalance Are Major Determinants of Human Chagas Disease

AU - Dhiman, Monisha

AU - Coronado, Yun A.

AU - Vallejo, Cecilia K.

AU - Petersen, John R.

AU - Ejilemele, Adetoun

AU - Nuñez, Sonia

AU - Zago, Maria Paola

AU - Spratt, Heidi

AU - Garg, Nisha

PY - 2013/8

Y1 - 2013/8

N2 - Background:We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease.Methods:Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers.Results:Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56%), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52%) and glutathione (GSH, 75%) contents. Correlation analysis identified a significant (p<0.001) linear relationship between inflammatory markers (AOPP/nitrite: r = 0.877), inflammation and antioxidant/oxidant status (AOPP/glutathione peroxidase (GPX): r = 0.902, AOPP/GSH: r = 0.806, Nitrite/GPX: 0.773, Nitrite/LPO: 0.805, MDA/MPO: 0.718), and antioxidant/oxidant levels (GPX/MDA: r = 0.768) in chagasic subjects. Of these, MPO, LPO and nitrite biomarkers were highly specific and sensitive for distinguishing seropositive/chagasic subjects from seronegative/healthy controls (p<0.001, training and fitting AUC/ROC >0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77% decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels.Conclusions:The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas disease.

AB - Background:We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease.Methods:Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers.Results:Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56%), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52%) and glutathione (GSH, 75%) contents. Correlation analysis identified a significant (p<0.001) linear relationship between inflammatory markers (AOPP/nitrite: r = 0.877), inflammation and antioxidant/oxidant status (AOPP/glutathione peroxidase (GPX): r = 0.902, AOPP/GSH: r = 0.806, Nitrite/GPX: 0.773, Nitrite/LPO: 0.805, MDA/MPO: 0.718), and antioxidant/oxidant levels (GPX/MDA: r = 0.768) in chagasic subjects. Of these, MPO, LPO and nitrite biomarkers were highly specific and sensitive for distinguishing seropositive/chagasic subjects from seronegative/healthy controls (p<0.001, training and fitting AUC/ROC >0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77% decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels.Conclusions:The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas disease.

UR - http://www.scopus.com/inward/record.url?scp=84883407964&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883407964&partnerID=8YFLogxK

U2 - 10.1371/journal.pntd.0002364

DO - 10.1371/journal.pntd.0002364

M3 - Article

VL - 7

JO - PLoS Neglected Tropical Diseases

JF - PLoS Neglected Tropical Diseases

SN - 1935-2727

IS - 8

M1 - e2364

ER -