Inosine protects against the development of diabetes in multiple-low-dose streptozotocin and nonobese diabetic mouse models of type 1 diabetes

Jon G. Mabley, Alex Rabinovitch, Wilma Suarez-Pinzon, György Haskó, Pál Pacher, Robert Power, Gary Southan, Andrew Salzman, Csaba Szabó

    Research output: Contribution to journalArticlepeer-review

    34 Scopus citations

    Abstract

    Inosine, a naturally occurring purine, was long considered to be an inactive metabolite of adenosine. However, recently inosine has been shown to be an immunomodulator and anti-inflammatory agent. The aim of this study was to determine whether inosine influences anti-inflammatory effects and affects the development of type 1 diabetes in murine models. Type 1 diabetes was induced either chemically by streptozotocin or genetically using the nonobese diabetic mouse (NOD) model. Mice were treated with inosine (100 or 200 mg kg-1d-1) and diabetes incidence was monitored. The effect of inosine on pancreas immune cell infiltration, oxidative stress, and cytokine profile also was determined. For the transplantation model islets were placed under the renal capsule of NOD mice and inosine (200 mg kg-1d-1) treatment started the day of islet transplantation. Graft rejection was diagnosed by return of hyperglycemia accompanied by glucosuria and ketonuria. inosine reduced the incidence of diabetes in both streptozotocin-induced diabetes and spontaneous diabetes in NOD mice. Inosine decreased pancreatic leukocyte infiltration and oxidative stress in addition to switching the cytokine profile from a Th1 to a Th2 profile. Inosine prolonged pancreatic islet graft survival, increased the number of surviving β cells, and reduced the number of infiltrating leukocytes. Inosine protects against both the development of diabetes and against the rejection of transplanted islets. The purine exerts anti-inflammatory effects in the pancreas, which is its likely mode of action. The use of inosine should be considered as a potential preventative therapy in humans susceptible to developing Type 1 diabetes and as a possible antirejection therapy for islet transplant recipients.

    Original languageEnglish (US)
    Pages (from-to)96-104
    Number of pages9
    JournalMolecular Medicine
    Volume9
    Issue number3-4
    DOIs
    StatePublished - 2003

    ASJC Scopus subject areas

    • Molecular Medicine
    • Molecular Biology
    • Genetics
    • Genetics(clinical)

    Fingerprint Dive into the research topics of 'Inosine protects against the development of diabetes in multiple-low-dose streptozotocin and nonobese diabetic mouse models of type 1 diabetes'. Together they form a unique fingerprint.

    Cite this