Abstract
Current methods for monitoring exercise exertion rely upon heart rate monitors, which represent a crude and lagging indicator of conditioning. The rationale for the present study is that both systemic and local metabolic mechanisms are responsible for physical performance, and therefore they should be simultaneously quantified to achieve an objective assessment of human conditioning. We propose a compact, wearable near-infrared spectroscopy (NIRS) device integrated with electrocardiography (ECG) and photoplethysmography (PPG) to simultaneously assess the cardiovascular and local response to exercise. The system was tested on subjects performing a graded maximal exercise by comparing our readings with metabolic variables measured with respiratory gas analysis. We found strong correlations between local deoxyhemoglobin concentration [HHb], heart rate and oxygen uptake, as well as between oxyhemoglobin concentration [HbO(2)] and stroke volume. This study shows that combined NIRS, ECG and PPG measurements yield useful information to understand the interplay between systemic and local muscular responses to exercise.
Original language | English (US) |
---|---|
Pages (from-to) | 3760-3763 |
Number of pages | 4 |
Journal | Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference |
State | Published - 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Signal Processing
- Biomedical Engineering
- Health Informatics