Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation

Pere Roca-Cusachs, Armando Del Rio, Eileen Puklin-Faucher, Nils C. Gauthier, Nicolas Biais, Michael Sheetz

Research output: Contribution to journalArticle

143 Citations (Scopus)

Abstract

Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.

Original languageEnglish (US)
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number15
DOIs
StatePublished - Apr 9 2013
Externally publishedYes

Fingerprint

Actinin
Integrins
Extracellular Matrix
Talin
Focal Adhesions
Fibronectins
Actins
Vitronectin
Cytoskeleton
Actin Cytoskeleton
Cell Communication
Collagen

ASJC Scopus subject areas

  • General

Cite this

Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. / Roca-Cusachs, Pere; Del Rio, Armando; Puklin-Faucher, Eileen; Gauthier, Nils C.; Biais, Nicolas; Sheetz, Michael.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 110, No. 15, 09.04.2013.

Research output: Contribution to journalArticle

@article{c5707a9feb074ef0aab8df4ecc980b2f,
title = "Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation",
abstract = "Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.",
author = "Pere Roca-Cusachs and {Del Rio}, Armando and Eileen Puklin-Faucher and Gauthier, {Nils C.} and Nicolas Biais and Michael Sheetz",
year = "2013",
month = "4",
day = "9",
doi = "10.1073/pnas.1220723110",
language = "English (US)",
volume = "110",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "15",

}

TY - JOUR

T1 - Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation

AU - Roca-Cusachs, Pere

AU - Del Rio, Armando

AU - Puklin-Faucher, Eileen

AU - Gauthier, Nils C.

AU - Biais, Nicolas

AU - Sheetz, Michael

PY - 2013/4/9

Y1 - 2013/4/9

N2 - Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.

AB - Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.

UR - http://www.scopus.com/inward/record.url?scp=84876053270&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84876053270&partnerID=8YFLogxK

U2 - 10.1073/pnas.1220723110

DO - 10.1073/pnas.1220723110

M3 - Article

C2 - 23515331

AN - SCOPUS:84876053270

VL - 110

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 15

ER -