Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of west nile virus genomic RNA facilitates viral minus-strand RNA synthesis

William G. Davis, Jerry L. Blackwell, Pei-Yong Shi, Margo A. Brinton

Research output: Contribution to journalArticle

104 Citations (Scopus)

Abstract

RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3′(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3′(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEFIA binding to the 3′ SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3′ SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3′ SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3′ end of the genome and the RC. eEF1A bound with similar efficiencies to the 3′-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.

Original languageEnglish (US)
Pages (from-to)10172-10187
Number of pages16
JournalJournal of Virology
Volume81
Issue number18
DOIs
StatePublished - Sep 2007
Externally publishedYes

Fingerprint

West Nile virus
Viral RNA
RNA
genomics
stems
synthesis
Flavivirus
Proteins
proteins
virus replication
Flaviviridae
mutation
Mutation
cells
binding sites
Binding Sites
Dengue virus
Polyproteins
Dengue Virus
assays

ASJC Scopus subject areas

  • Immunology

Cite this

Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of west nile virus genomic RNA facilitates viral minus-strand RNA synthesis. / Davis, William G.; Blackwell, Jerry L.; Shi, Pei-Yong; Brinton, Margo A.

In: Journal of Virology, Vol. 81, No. 18, 09.2007, p. 10172-10187.

Research output: Contribution to journalArticle

@article{2e22e84ed9df46c7ab4d8456aee1770c,
title = "Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of west nile virus genomic RNA facilitates viral minus-strand RNA synthesis",
abstract = "RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3′(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3′(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEFIA binding to the 3′ SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3′ SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3′ SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3′ end of the genome and the RC. eEF1A bound with similar efficiencies to the 3′-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.",
author = "Davis, {William G.} and Blackwell, {Jerry L.} and Pei-Yong Shi and Brinton, {Margo A.}",
year = "2007",
month = "9",
doi = "10.1128/JVI.00531-07",
language = "English (US)",
volume = "81",
pages = "10172--10187",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "18",

}

TY - JOUR

T1 - Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of west nile virus genomic RNA facilitates viral minus-strand RNA synthesis

AU - Davis, William G.

AU - Blackwell, Jerry L.

AU - Shi, Pei-Yong

AU - Brinton, Margo A.

PY - 2007/9

Y1 - 2007/9

N2 - RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3′(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3′(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEFIA binding to the 3′ SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3′ SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3′ SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3′ end of the genome and the RC. eEF1A bound with similar efficiencies to the 3′-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.

AB - RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3′(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3′(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEFIA binding to the 3′ SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3′ SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3′ SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3′ end of the genome and the RC. eEF1A bound with similar efficiencies to the 3′-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.

UR - http://www.scopus.com/inward/record.url?scp=35348822495&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35348822495&partnerID=8YFLogxK

U2 - 10.1128/JVI.00531-07

DO - 10.1128/JVI.00531-07

M3 - Article

VL - 81

SP - 10172

EP - 10187

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 18

ER -