Interactions of the RepA helicase hexamer of plasmid RSF1010 with the ssDNA. Quantitative analysis of stoichiometries, intrinsic affinities, cooperativities, and heterogeneity of the total ssDNA-binding site

Maria J. Jezewska, Roberto Galletto, Wlodzimierz Bujalowski

    Research output: Contribution to journalArticle

    23 Scopus citations

    Abstract

    Interactions between the replicative RepA helicase hexamer of plasmid RSF1010 with the single-stranded DNA (ssDNA) have been studied, using the quantitative fluorescence titration, analytical sedimentation velocity, and sedimentation equilibrium techniques. Experiments were performed with fluorescein-labeled ssDNA oligomers. Studies with unmodified ssDNA oligomers were accomplished using the macromolecular competition titration method. Analyses of RepA helicase interactions with a series of the ssDNA provide direct evidence that the total site-size of the RepA hexamer-ssDNA complex is 19±1 nucleotide residues. The total ssDNA-binding site of the hexamer has a heterogeneous structure. Part of the total binding site constitutes the proper ssDNA-binding site of the enzyme, an area that possesses strong ssDNA-binding capability and encompasses only 8±1 residues of the ssDNA. The statistical effect on the macroscopic binding constant for the proper ssDNA-binding site indicates that it is structurally separated from the remaining part of the total ssDNA-binding site. Engagement in interactions with the ssDNA is accompanied by net ion release. Moreover, the proper ssDNA-binding site shows little base specificity. On the other hand, with long ssDNA oligomers, the entire total ssDNA-binding site of the RepA hexamer engages in interactions with the ssDNA resulting in a dramatic change in the nature of interactions with the nucleic acid. The association includes an uptake of ions by the protein. Moreover, unlike the proper-ssDNA-binding site, the total binding site shows a significant preference for pyrimidine oligomers. In this aspect, the RepA helicase is different from the Escherichia coli DnaB hexamer that shows large preference for purine homo-oligomers. In similar solution conditions, the ssDNA intrinsic affinity of the RepA hexamer is similar to the intrinsic affinity of the DnaB helicase. The RepA helicase binds to ssDNA oligomers that can accept more than one RepA hexamer with significant positive cooperative interactions.

    Original languageEnglish (US)
    Pages (from-to)115-136
    Number of pages22
    JournalJournal of Molecular Biology
    Volume343
    Issue number1
    DOIs
    StatePublished - Oct 8 2004

    Keywords

    • DNA replication
    • helicases
    • motor proteins
    • protein-ssDNA interactions
    • quantitative fluorescence titrations

    ASJC Scopus subject areas

    • Structural Biology
    • Molecular Biology

    Fingerprint Dive into the research topics of 'Interactions of the RepA helicase hexamer of plasmid RSF1010 with the ssDNA. Quantitative analysis of stoichiometries, intrinsic affinities, cooperativities, and heterogeneity of the total ssDNA-binding site'. Together they form a unique fingerprint.

  • Cite this