TY - JOUR
T1 - Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires
AU - Yu, Denny
AU - Dural, Cem
AU - Morrow, Melissa M.B.
AU - Yang, Liyun
AU - Collins, Justin W.
AU - Hallbeck, Susan
AU - Kjellman, Magnus
AU - Forsman, Mikael
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Background: The introduction of robotic technology has revolutionized radical prostatectomy surgery. However, the potential benefits of robotic techniques may have trade-offs in increased mental demand for the surgeon and the physical demand for the assisting surgeon. This study employed an innovative motion tracking tool along with validated workload questionnaire to assess the ergonomics and workload for both assisting and console surgeons intraoperatively. Methods: Fifteen RARP cases were collected in this study. Cases were performed by 10 different participants, six primarily performed console tasks and four primarily performed assisting tasks. Participants had a median 12 (min—3, max—25) years of surgical experience. Both console and assisting surgeons performed robotic prostatectomy cases while wearing inertial measurement units (IMUs) that continuously track neck, shoulder, and torso motion without interfering with the sterile environment. Postoperatively, participants completed a workload questionnaire (SURG-TLX) and a body part discomfort questionnaire. Results: Twenty-six questionnaires were completed from 13 assisting and 13 console surgeons over the 15 cases. Postoperative pain was reported highest for the right shoulder and neck. Mental demands were 41 % higher for surgeons at the console than assisting (p < 0.05), while physical demands were not significantly different. Assisting surgeons worked in demanding neck postures for 58 % of the procedure compared to 24 % for the console surgeon (p < 0.01). Surgeons at the console were primarily static and showed 2–5 times fewer movements than assisting surgeons (p < 0.01). Conclusions: Postures were more ergonomic during console tasks than when assisting by the bedside; however, the console may constrain postures leading to static loads that have been associated with musculoskeletal symptoms for the neck, torso, and shoulders. The IMU sensors were effective at quantifying ergonomics in robotic prostatectomies, and these methods and findings have broad applications to other robotic procedures.
AB - Background: The introduction of robotic technology has revolutionized radical prostatectomy surgery. However, the potential benefits of robotic techniques may have trade-offs in increased mental demand for the surgeon and the physical demand for the assisting surgeon. This study employed an innovative motion tracking tool along with validated workload questionnaire to assess the ergonomics and workload for both assisting and console surgeons intraoperatively. Methods: Fifteen RARP cases were collected in this study. Cases were performed by 10 different participants, six primarily performed console tasks and four primarily performed assisting tasks. Participants had a median 12 (min—3, max—25) years of surgical experience. Both console and assisting surgeons performed robotic prostatectomy cases while wearing inertial measurement units (IMUs) that continuously track neck, shoulder, and torso motion without interfering with the sterile environment. Postoperatively, participants completed a workload questionnaire (SURG-TLX) and a body part discomfort questionnaire. Results: Twenty-six questionnaires were completed from 13 assisting and 13 console surgeons over the 15 cases. Postoperative pain was reported highest for the right shoulder and neck. Mental demands were 41 % higher for surgeons at the console than assisting (p < 0.05), while physical demands were not significantly different. Assisting surgeons worked in demanding neck postures for 58 % of the procedure compared to 24 % for the console surgeon (p < 0.01). Surgeons at the console were primarily static and showed 2–5 times fewer movements than assisting surgeons (p < 0.01). Conclusions: Postures were more ergonomic during console tasks than when assisting by the bedside; however, the console may constrain postures leading to static loads that have been associated with musculoskeletal symptoms for the neck, torso, and shoulders. The IMU sensors were effective at quantifying ergonomics in robotic prostatectomies, and these methods and findings have broad applications to other robotic procedures.
KW - Ergonomics
KW - Robotic surgery
KW - Robotic-assisted radical prostatectomy
KW - Workload
UR - http://www.scopus.com/inward/record.url?scp=84982988031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84982988031&partnerID=8YFLogxK
U2 - 10.1007/s00464-016-5047-y
DO - 10.1007/s00464-016-5047-y
M3 - Article
C2 - 27495330
AN - SCOPUS:84982988031
SN - 0930-2794
VL - 31
SP - 877
EP - 886
JO - Surgical Endoscopy
JF - Surgical Endoscopy
IS - 2
ER -