Intrapleural activation, processing, efficacy, and duration of protection of single-chain urokinase in evolving tetracycline-induced pleural injury in rabbits

Steven Idell, Timothy Allen, Shande Chen, Kathy Koenig, Andrew Mazar, Ali Azghani

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Intrapleural fibrinolysins have been used to treat pleural loculations. However, the efficacy of clinically available agents has recently been questioned, providing a rationale for investigation of new interventions. Single-chain urokinase plasminogen activator resists inhibition by serpins, and repeated, daily intrapleural administration of this agent prevents intrapleural loculation more effectively than complexes of this proenzyme with its receptor (Idell S, Mazar A, Cines D, Kuo A, Parry G, Gawlak S, Juarez J, Koenig K, Azghani A, Hadden W, McLarty J, Miller E. Am J Respir Crit Care Med 166: 920-926, 2002). Understanding of the protective mechanism and intrapleural processing remains unclear. We speculated that single-chain urokinase could induce sustained local fibrinolysis and protection by selective administration either before, during, or following loculation after pleural injury induced by tetracycline in rabbits. Enzymography, immunoassays, histology, immunohistochemistry, morphology, and morphometry were used to test the efficacy, duration of protective effect, and processing of single-chain urokinase. Intrapleural single chain urokinase prevented loculation at 72 h after injury (P <0.01) if given either before or during adhesion formation and was converted to two-chain high-molecular-weight urokinase, which remained active for at least 24 h within pleural fluids. The effect was dose dependent, and established loculations at 72 h after tetracycline-induced injury were reversed at 96 h by single-dose treatment. Single-chain urokinase bound and saturated intrapleural plasminogen activator inhibitory (PAI)-1-like activity and urokinase-related immunoreactivity of the mesothelium was comparable in treatment or vehicle-control groups. Adhesions recurred by 2 wk after treatment with recurrence of excess local PAI activity. Single-chain urokinase induces sustained local fibrinolysis and reversibly prevents pleural loculation for up to 48 h after intrapleural administration after tetracycline-induced injury.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume292
Issue number1
DOIs
StatePublished - Jan 2007
Externally publishedYes

Fingerprint

Urokinase-Type Plasminogen Activator
Tetracycline
Rabbits
Wounds and Injuries
Plasminogen Activators
Fibrinolysis
Serpins
Enzyme Precursors
Fibrinolysin
Immunoassay
Histology
Therapeutics
Epithelium
Molecular Weight
Immunohistochemistry
Recurrence
Control Groups

Keywords

  • Fibrinolysis
  • Loculation
  • Pleuritis
  • Pleurodesis

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine
  • Cell Biology
  • Physiology

Cite this

Intrapleural activation, processing, efficacy, and duration of protection of single-chain urokinase in evolving tetracycline-induced pleural injury in rabbits. / Idell, Steven; Allen, Timothy; Chen, Shande; Koenig, Kathy; Mazar, Andrew; Azghani, Ali.

In: American Journal of Physiology - Lung Cellular and Molecular Physiology, Vol. 292, No. 1, 01.2007.

Research output: Contribution to journalArticle

@article{c0e1b430a2a245fdb4f8107ebc6510e0,
title = "Intrapleural activation, processing, efficacy, and duration of protection of single-chain urokinase in evolving tetracycline-induced pleural injury in rabbits",
abstract = "Intrapleural fibrinolysins have been used to treat pleural loculations. However, the efficacy of clinically available agents has recently been questioned, providing a rationale for investigation of new interventions. Single-chain urokinase plasminogen activator resists inhibition by serpins, and repeated, daily intrapleural administration of this agent prevents intrapleural loculation more effectively than complexes of this proenzyme with its receptor (Idell S, Mazar A, Cines D, Kuo A, Parry G, Gawlak S, Juarez J, Koenig K, Azghani A, Hadden W, McLarty J, Miller E. Am J Respir Crit Care Med 166: 920-926, 2002). Understanding of the protective mechanism and intrapleural processing remains unclear. We speculated that single-chain urokinase could induce sustained local fibrinolysis and protection by selective administration either before, during, or following loculation after pleural injury induced by tetracycline in rabbits. Enzymography, immunoassays, histology, immunohistochemistry, morphology, and morphometry were used to test the efficacy, duration of protective effect, and processing of single-chain urokinase. Intrapleural single chain urokinase prevented loculation at 72 h after injury (P <0.01) if given either before or during adhesion formation and was converted to two-chain high-molecular-weight urokinase, which remained active for at least 24 h within pleural fluids. The effect was dose dependent, and established loculations at 72 h after tetracycline-induced injury were reversed at 96 h by single-dose treatment. Single-chain urokinase bound and saturated intrapleural plasminogen activator inhibitory (PAI)-1-like activity and urokinase-related immunoreactivity of the mesothelium was comparable in treatment or vehicle-control groups. Adhesions recurred by 2 wk after treatment with recurrence of excess local PAI activity. Single-chain urokinase induces sustained local fibrinolysis and reversibly prevents pleural loculation for up to 48 h after intrapleural administration after tetracycline-induced injury.",
keywords = "Fibrinolysis, Loculation, Pleuritis, Pleurodesis",
author = "Steven Idell and Timothy Allen and Shande Chen and Kathy Koenig and Andrew Mazar and Ali Azghani",
year = "2007",
month = "1",
doi = "10.1152/ajplung.00118.2006",
language = "English (US)",
volume = "292",
journal = "American Journal of Physiology - Endocrinology and Metabolism",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Intrapleural activation, processing, efficacy, and duration of protection of single-chain urokinase in evolving tetracycline-induced pleural injury in rabbits

AU - Idell, Steven

AU - Allen, Timothy

AU - Chen, Shande

AU - Koenig, Kathy

AU - Mazar, Andrew

AU - Azghani, Ali

PY - 2007/1

Y1 - 2007/1

N2 - Intrapleural fibrinolysins have been used to treat pleural loculations. However, the efficacy of clinically available agents has recently been questioned, providing a rationale for investigation of new interventions. Single-chain urokinase plasminogen activator resists inhibition by serpins, and repeated, daily intrapleural administration of this agent prevents intrapleural loculation more effectively than complexes of this proenzyme with its receptor (Idell S, Mazar A, Cines D, Kuo A, Parry G, Gawlak S, Juarez J, Koenig K, Azghani A, Hadden W, McLarty J, Miller E. Am J Respir Crit Care Med 166: 920-926, 2002). Understanding of the protective mechanism and intrapleural processing remains unclear. We speculated that single-chain urokinase could induce sustained local fibrinolysis and protection by selective administration either before, during, or following loculation after pleural injury induced by tetracycline in rabbits. Enzymography, immunoassays, histology, immunohistochemistry, morphology, and morphometry were used to test the efficacy, duration of protective effect, and processing of single-chain urokinase. Intrapleural single chain urokinase prevented loculation at 72 h after injury (P <0.01) if given either before or during adhesion formation and was converted to two-chain high-molecular-weight urokinase, which remained active for at least 24 h within pleural fluids. The effect was dose dependent, and established loculations at 72 h after tetracycline-induced injury were reversed at 96 h by single-dose treatment. Single-chain urokinase bound and saturated intrapleural plasminogen activator inhibitory (PAI)-1-like activity and urokinase-related immunoreactivity of the mesothelium was comparable in treatment or vehicle-control groups. Adhesions recurred by 2 wk after treatment with recurrence of excess local PAI activity. Single-chain urokinase induces sustained local fibrinolysis and reversibly prevents pleural loculation for up to 48 h after intrapleural administration after tetracycline-induced injury.

AB - Intrapleural fibrinolysins have been used to treat pleural loculations. However, the efficacy of clinically available agents has recently been questioned, providing a rationale for investigation of new interventions. Single-chain urokinase plasminogen activator resists inhibition by serpins, and repeated, daily intrapleural administration of this agent prevents intrapleural loculation more effectively than complexes of this proenzyme with its receptor (Idell S, Mazar A, Cines D, Kuo A, Parry G, Gawlak S, Juarez J, Koenig K, Azghani A, Hadden W, McLarty J, Miller E. Am J Respir Crit Care Med 166: 920-926, 2002). Understanding of the protective mechanism and intrapleural processing remains unclear. We speculated that single-chain urokinase could induce sustained local fibrinolysis and protection by selective administration either before, during, or following loculation after pleural injury induced by tetracycline in rabbits. Enzymography, immunoassays, histology, immunohistochemistry, morphology, and morphometry were used to test the efficacy, duration of protective effect, and processing of single-chain urokinase. Intrapleural single chain urokinase prevented loculation at 72 h after injury (P <0.01) if given either before or during adhesion formation and was converted to two-chain high-molecular-weight urokinase, which remained active for at least 24 h within pleural fluids. The effect was dose dependent, and established loculations at 72 h after tetracycline-induced injury were reversed at 96 h by single-dose treatment. Single-chain urokinase bound and saturated intrapleural plasminogen activator inhibitory (PAI)-1-like activity and urokinase-related immunoreactivity of the mesothelium was comparable in treatment or vehicle-control groups. Adhesions recurred by 2 wk after treatment with recurrence of excess local PAI activity. Single-chain urokinase induces sustained local fibrinolysis and reversibly prevents pleural loculation for up to 48 h after intrapleural administration after tetracycline-induced injury.

KW - Fibrinolysis

KW - Loculation

KW - Pleuritis

KW - Pleurodesis

UR - http://www.scopus.com/inward/record.url?scp=33846229706&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33846229706&partnerID=8YFLogxK

U2 - 10.1152/ajplung.00118.2006

DO - 10.1152/ajplung.00118.2006

M3 - Article

VL - 292

JO - American Journal of Physiology - Endocrinology and Metabolism

JF - American Journal of Physiology - Endocrinology and Metabolism

SN - 0193-1849

IS - 1

ER -