Invariant subspaces of RL1

Daniel Jupiter, David Redett

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In this note we extend D. Singh and A. A. W. Mehanna's invariant subspace theorem for RH1 (the real Danach space of analytic functions in H1 with real Taylor coefficients) to the simply invariant subspaces of RL1 (the real Banach space of functions in L1 with real Fourier coefficients).

Original languageEnglish (US)
Pages (from-to)1133-1138
Number of pages6
JournalHouston Journal of Mathematics
Volume32
Issue number4
StatePublished - 2006
Externally publishedYes

Fingerprint

Invariant Subspace
Subspace Theorem
Space of Analytic Functions
Fourier coefficients
Banach space
Coefficient

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Invariant subspaces of RL1 . / Jupiter, Daniel; Redett, David.

In: Houston Journal of Mathematics, Vol. 32, No. 4, 2006, p. 1133-1138.

Research output: Contribution to journalArticle

Jupiter, D & Redett, D 2006, 'Invariant subspaces of RL1 ', Houston Journal of Mathematics, vol. 32, no. 4, pp. 1133-1138.
Jupiter, Daniel ; Redett, David. / Invariant subspaces of RL1 In: Houston Journal of Mathematics. 2006 ; Vol. 32, No. 4. pp. 1133-1138.
@article{202b2c2ea9e247ac993eddb05288d332,
title = "Invariant subspaces of RL1",
abstract = "In this note we extend D. Singh and A. A. W. Mehanna's invariant subspace theorem for RH1 (the real Danach space of analytic functions in H1 with real Taylor coefficients) to the simply invariant subspaces of RL1 (the real Banach space of functions in L1 with real Fourier coefficients).",
author = "Daniel Jupiter and David Redett",
year = "2006",
language = "English (US)",
volume = "32",
pages = "1133--1138",
journal = "Houston Journal of Mathematics",
issn = "0362-1588",
publisher = "University of Houston",
number = "4",

}

TY - JOUR

T1 - Invariant subspaces of RL1

AU - Jupiter, Daniel

AU - Redett, David

PY - 2006

Y1 - 2006

N2 - In this note we extend D. Singh and A. A. W. Mehanna's invariant subspace theorem for RH1 (the real Danach space of analytic functions in H1 with real Taylor coefficients) to the simply invariant subspaces of RL1 (the real Banach space of functions in L1 with real Fourier coefficients).

AB - In this note we extend D. Singh and A. A. W. Mehanna's invariant subspace theorem for RH1 (the real Danach space of analytic functions in H1 with real Taylor coefficients) to the simply invariant subspaces of RL1 (the real Banach space of functions in L1 with real Fourier coefficients).

UR - http://www.scopus.com/inward/record.url?scp=33846687331&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33846687331&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:33846687331

VL - 32

SP - 1133

EP - 1138

JO - Houston Journal of Mathematics

JF - Houston Journal of Mathematics

SN - 0362-1588

IS - 4

ER -