TY - JOUR
T1 - Islet amyloid polypeptide fibril catalyzes amyloid-β aggregation by promoting fibril nucleation rather than direct axial growth
AU - Song, Zhiyuan
AU - Tang, Huayuan
AU - Gatch, Adam
AU - Sun, Yunxiang
AU - Ding, Feng
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11
Y1 - 2024/11
N2 - Aberrant aggregation of amyloid-β (Aβ) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aβ co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aβ aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aβ monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aβ monomer could not directly grow onto IAPP fibrils by forming multiple stable β-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aβ monomer could axially grow on the Aβ fibril, forming parallel in-register β-sheets. Additionally, we showed that the IAPP fibril could catalyze Aβ fibril nucleation by promoting the formation of parallel in-register β-sheets in the C-terminus between bound Aβ peptides. This study enhances our understanding of the molecular interplay between Aβ and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.
AB - Aberrant aggregation of amyloid-β (Aβ) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aβ co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aβ aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aβ monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aβ monomer could not directly grow onto IAPP fibrils by forming multiple stable β-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aβ monomer could axially grow on the Aβ fibril, forming parallel in-register β-sheets. Additionally, we showed that the IAPP fibril could catalyze Aβ fibril nucleation by promoting the formation of parallel in-register β-sheets in the C-terminus between bound Aβ peptides. This study enhances our understanding of the molecular interplay between Aβ and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.
KW - Alzheimer's disease
KW - Catalyzed fibril nucleation
KW - Cross-seeding
KW - Self-seeding
KW - Type 2 diabetes
UR - http://www.scopus.com/inward/record.url?scp=85202559558&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85202559558&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.135137
DO - 10.1016/j.ijbiomac.2024.135137
M3 - Article
C2 - 39208885
AN - SCOPUS:85202559558
SN - 0141-8130
VL - 279
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 135137
ER -