Isolation and characterization of a novel gammaherpesvirus from a microbat cell line

Reed S. Shabman, Susmita Shrivastava, Tshidi Tsibane, Oliver Attie, Anitha Jayaprakash, Chad E. Mire, Kari E. Dilley, Vinita Puri, Timothy B. Stockwell, Thomas W. Geisbert, Ravi Sachidanandam, Christopher F. Basler

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

While employing deep sequencing and de novo assembly to characterize the mRNA transcript profile of a cell line derived from the microbat Myotis velifer incautus, we serendipitously identified mRNAs encoding proteins with a high level of identity to herpesviruses. A majority were closely related to proteins of equine herpesvirus 2 (EHV-2), a horse gammaherpesvirus. We demonstrated by electron microscopy the presence of herpesvirus-like particles in the microbat cells. Passage of supernatants from microbat cells to Vero cells resulted in syncytium formation, and expression of viral genes and amplification of viral DNA were demonstrated by quantitative PCR. Susceptibility of human cell lines to productive infection was also demonstrated. Next-generation sequencing and de novo assembly of the viral genome from supernatants from Vero cells yielded a single contig of approximately 130 kb with at least 77 open reading frames (ORFs), predicted microRNAs (miRNAs), and a gammaherpesvirus genomic organization. Phylogenic analysis of the envelope glycoprotein (gB) and DNA polymerase (POLD1) revealed similarity to multiple gammaherpesviruses, including those from as-yet-uncultured viruses of the Rhadinovirus genus that were obtained by deep sequencing of bat tissues. Moreover, the assembled genome revealed ORFs that share little or no homology to known ORFs in EHV-2 but are similar to accessory proteins of other gammaherpesviruses. Some also have striking homology to predicted Myotis bat proteins. Cumulatively, this study provides the first isolation and characterization of a replication-competent bat gammaherpesvirus.

Original languageEnglish (US)
Article numbere00070-15
JournalmSphere
Volume1
Issue number1
DOIs
StatePublished - Jan 1 2016

Keywords

  • Bats
  • Genomics
  • Herpesviruses
  • Next-generation sequencing
  • Transcriptomics
  • Virus discovery

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Isolation and characterization of a novel gammaherpesvirus from a microbat cell line'. Together they form a unique fingerprint.

Cite this