Abstract
The paraventricular nucleus (PVN) of the hypothalamus is important for the neural regulation of cardiovascular function. Nitric oxide (NO) increases synaptic GABA release to presympathetic PVN neurons through the cyclic guanosine monophosphate (cGMP)/protein kinase G signaling pathway. However, the downstream signaling mechanisms underlying the effect of NO on synaptic GABA release remain unclear. In this study, whole-cell voltage-clamp recordings were performed on retrograde-labeled spinally projecting PVN neurons in rat brain slices. Bath application of the NO precursor l-arginine or the NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly increased the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in labeled PVN neurons. A specific antagonist of cyclic ADP ribose, 8-bromo-cyclic ADP ribose (8-Br-cADPR), had no significant effect on l-arginine-induced potentiation of mIPSCs. Surprisingly, blocking of voltage-gated potassium channels (Kv) with 4-aminopyridine or α-dendrotoxin eliminated the effect of l-arginine on mIPSCs in all labeled PVN neurons tested. The membrane permeable cGMP analog mimicked the effect of l-arginine on mIPSCs, and this effect was blocked by α-dendrotoxin. Furthermore, the specific Kv channel blocker for Kv1.1 (dendrotoxin-K) or Kv1.2 (tityustoxin-Kα) abolished the effect of l-arginine on mIPSCs in all neurons tested. SNAP failed to inhibit the firing activity of labeled PVN neurons in the presence of dendrotoxin-K, Kα. Additionally, the immunoreactivity of Kv1.1 and Kv1.2 subunits was colocalized extensively with synaptophysin in the PVN. These findings suggest that NO increases GABAergic input to PVN presympathetic neurons through a downstream mechanism involving the Kv1.1 and Kv1.2 channels at the nerve terminals.
Original language | English (US) |
---|---|
Pages (from-to) | 315-327 |
Number of pages | 13 |
Journal | Neuroscience |
Volume | 149 |
Issue number | 2 |
DOIs | |
State | Published - Oct 26 2007 |
Externally published | Yes |
Keywords
- autonomic regulation
- nitric oxide
- potassium channels
- presynaptic regulation
- sympathetic nervous system
- synaptic transmission
ASJC Scopus subject areas
- General Neuroscience