Abstract
Dynamic trafficking of AMPA-type glutamate receptor (AMPA-R) in neuronal cells is a key cellular mechanism for learning and memory in the brain, which is regulated by AMPA-R interacting proteins. LARGE, a protein associated with intellectual disability, was found to be a novel component of the AMPA-R protein complex in our proteomic study. Here, our functional study of LARGE showed that during homeostatic scaling-down, increased LARGE expression at the Golgi apparatus (Golgi) negatively controlled AMPA-R trafficking from the Golgi to the plasma membrane, leading to downregulated surface and synaptic AMPA-R targeting. In LARGE knockdown mice, long-term potentiation (LTP) was occluded by synaptic AMPA-R overloading, resulting in impaired long-term memory formation. These findings indicate that the fine-tuning of AMPA-R trafficking by LARGE at the Golgi is critical for memory stability in the brain. Our study thus provides novel insights into the pathophysiology of brain disorders associated with intellectual disability.
Original language | English (US) |
---|---|
Journal | Unknown Journal |
DOIs | |
State | Published - Dec 19 2017 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- Immunology and Microbiology(all)
- Neuroscience(all)
- Pharmacology, Toxicology and Pharmaceutics(all)