TY - JOUR
T1 - Least median of squares filtering of locally optimal point matches for compressible flow image registration
AU - Castillo, Edward
AU - Castillo, Richard
AU - White, Benjamin
AU - Rojo, Javier
AU - Guerrero, Thomas
PY - 2012/8/7
Y1 - 2012/8/7
N2 - Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration.
AB - Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration.
UR - http://www.scopus.com/inward/record.url?scp=84863967319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863967319&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/57/15/4827
DO - 10.1088/0031-9155/57/15/4827
M3 - Article
C2 - 22797602
AN - SCOPUS:84863967319
SN - 0031-9155
VL - 57
SP - 4827
EP - 4833
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 15
ER -