TY - JOUR
T1 - Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke
AU - Hurt, Christopher P.
AU - Burgess, Jamie K.
AU - Brown, David A.
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5. ±. 9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3. ±. 4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p= 0.004) under some level of BWS (5% n= 2, 10% n= 3, 20% n= 3) whereas nonimpaired controls did not change speed (p= 0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r= 0.68, p= 0.003) and nonparetic braking impulses (r= -0.80, p= 0.006), but were not correlated with decreased paretic braking impulses (r= 0.50 p= 0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb.
AB - Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5. ±. 9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3. ±. 4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p= 0.004) under some level of BWS (5% n= 2, 10% n= 3, 20% n= 3) whereas nonimpaired controls did not change speed (p= 0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r= 0.68, p= 0.003) and nonparetic braking impulses (r= -0.80, p= 0.006), but were not correlated with decreased paretic braking impulses (r= 0.50 p= 0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb.
KW - Body weight support
KW - Gait speed
KW - Ground reaction force
KW - Poststroke
UR - http://www.scopus.com/inward/record.url?scp=84927955378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84927955378&partnerID=8YFLogxK
U2 - 10.1016/j.gaitpost.2015.02.004
DO - 10.1016/j.gaitpost.2015.02.004
M3 - Article
C2 - 25770079
AN - SCOPUS:84927955378
SN - 0966-6362
VL - 41
SP - 857
EP - 859
JO - Gait and Posture
JF - Gait and Posture
IS - 3
ER -