Long term instability and molecular mechanism of 5-azacytidine-induced DNA hypomethylation in normal and neoplastic tissues in vivo

Leejane Lu, K. Randerath

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

We have previously shown that treatment of normal and neoplastic cells with the antileukemic drug, 5-azacytidine, led to the rapid synthesis of a low molecular weight RNA containing 5-azacytosine. This fraudulent RNA inhibited tRNA (cytosine-5)-methyltransferase early after drug administration. The absence of tRNA (cytosine-5)-methyltransferase activity resulted in the synthesis of tRNA specifically deficient in 5-methylcytosine. Here, we show that treatment of L1210 cells, grown intraperitoneally in mice, with 5-azacytidine led to a rapid and prolonged inactivation of DNA (cytosine-5)-methyltransferase activity and to the synthesis of undermethylated DNA. DNA isolated from the treated tissue was found to inactivate the DNA methylase (decreased V(max)) in in vitro DNA (cytosine-5)-methyltransferase assays. Kinetic analysis showed noncompetitive inhibition of the substrate by the inhibitor. The persistence of DNA undermethylation after treatment with 5-azadeoxycytidine or 5-azacytidine in animals has not been measured directly; therefore, we have investigated this phenomenon in the intact animal. Prolonged treatment with 5-azacytidine was required to maintain a fraction of undermethylated sites in DNA of L1210 cells in vivo for up to 4 months or longer after drug withdrawal. Such treatment led to instability of DNA methylation levels in L1210 cells in vivo. At least a partial restoration of DNA 5-methylcytosine levels was observed after acute and chronic 5-azacytidine treatment, respectively. 5-Azacytidine was also found to induce DNA hypomethylation in regenerating, but not in normal adult mouse liver cells. Our results show that: 1) it was extremely difficult to decrease the DNA methylation level to <50% of control; and 2) it was also difficult to maintain stable DNA methylation levels in vivo after exposure to the drug.

Original languageEnglish (US)
Pages (from-to)594-603
Number of pages10
JournalMolecular Pharmacology
Volume26
Issue number3
StatePublished - 1984
Externally publishedYes

Fingerprint

Azacitidine
DNA
DNA (Cytosine-5-)-Methyltransferase
DNA Methylation
Transfer RNA
5-Methylcytosine
decitabine
Pharmaceutical Preparations
RNA
Molecular Weight
Liver

ASJC Scopus subject areas

  • Pharmacology

Cite this

Long term instability and molecular mechanism of 5-azacytidine-induced DNA hypomethylation in normal and neoplastic tissues in vivo. / Lu, Leejane; Randerath, K.

In: Molecular Pharmacology, Vol. 26, No. 3, 1984, p. 594-603.

Research output: Contribution to journalArticle

@article{71081141cc3045399e98114ce487983d,
title = "Long term instability and molecular mechanism of 5-azacytidine-induced DNA hypomethylation in normal and neoplastic tissues in vivo",
abstract = "We have previously shown that treatment of normal and neoplastic cells with the antileukemic drug, 5-azacytidine, led to the rapid synthesis of a low molecular weight RNA containing 5-azacytosine. This fraudulent RNA inhibited tRNA (cytosine-5)-methyltransferase early after drug administration. The absence of tRNA (cytosine-5)-methyltransferase activity resulted in the synthesis of tRNA specifically deficient in 5-methylcytosine. Here, we show that treatment of L1210 cells, grown intraperitoneally in mice, with 5-azacytidine led to a rapid and prolonged inactivation of DNA (cytosine-5)-methyltransferase activity and to the synthesis of undermethylated DNA. DNA isolated from the treated tissue was found to inactivate the DNA methylase (decreased V(max)) in in vitro DNA (cytosine-5)-methyltransferase assays. Kinetic analysis showed noncompetitive inhibition of the substrate by the inhibitor. The persistence of DNA undermethylation after treatment with 5-azadeoxycytidine or 5-azacytidine in animals has not been measured directly; therefore, we have investigated this phenomenon in the intact animal. Prolonged treatment with 5-azacytidine was required to maintain a fraction of undermethylated sites in DNA of L1210 cells in vivo for up to 4 months or longer after drug withdrawal. Such treatment led to instability of DNA methylation levels in L1210 cells in vivo. At least a partial restoration of DNA 5-methylcytosine levels was observed after acute and chronic 5-azacytidine treatment, respectively. 5-Azacytidine was also found to induce DNA hypomethylation in regenerating, but not in normal adult mouse liver cells. Our results show that: 1) it was extremely difficult to decrease the DNA methylation level to <50{\%} of control; and 2) it was also difficult to maintain stable DNA methylation levels in vivo after exposure to the drug.",
author = "Leejane Lu and K. Randerath",
year = "1984",
language = "English (US)",
volume = "26",
pages = "594--603",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - Long term instability and molecular mechanism of 5-azacytidine-induced DNA hypomethylation in normal and neoplastic tissues in vivo

AU - Lu, Leejane

AU - Randerath, K.

PY - 1984

Y1 - 1984

N2 - We have previously shown that treatment of normal and neoplastic cells with the antileukemic drug, 5-azacytidine, led to the rapid synthesis of a low molecular weight RNA containing 5-azacytosine. This fraudulent RNA inhibited tRNA (cytosine-5)-methyltransferase early after drug administration. The absence of tRNA (cytosine-5)-methyltransferase activity resulted in the synthesis of tRNA specifically deficient in 5-methylcytosine. Here, we show that treatment of L1210 cells, grown intraperitoneally in mice, with 5-azacytidine led to a rapid and prolonged inactivation of DNA (cytosine-5)-methyltransferase activity and to the synthesis of undermethylated DNA. DNA isolated from the treated tissue was found to inactivate the DNA methylase (decreased V(max)) in in vitro DNA (cytosine-5)-methyltransferase assays. Kinetic analysis showed noncompetitive inhibition of the substrate by the inhibitor. The persistence of DNA undermethylation after treatment with 5-azadeoxycytidine or 5-azacytidine in animals has not been measured directly; therefore, we have investigated this phenomenon in the intact animal. Prolonged treatment with 5-azacytidine was required to maintain a fraction of undermethylated sites in DNA of L1210 cells in vivo for up to 4 months or longer after drug withdrawal. Such treatment led to instability of DNA methylation levels in L1210 cells in vivo. At least a partial restoration of DNA 5-methylcytosine levels was observed after acute and chronic 5-azacytidine treatment, respectively. 5-Azacytidine was also found to induce DNA hypomethylation in regenerating, but not in normal adult mouse liver cells. Our results show that: 1) it was extremely difficult to decrease the DNA methylation level to <50% of control; and 2) it was also difficult to maintain stable DNA methylation levels in vivo after exposure to the drug.

AB - We have previously shown that treatment of normal and neoplastic cells with the antileukemic drug, 5-azacytidine, led to the rapid synthesis of a low molecular weight RNA containing 5-azacytosine. This fraudulent RNA inhibited tRNA (cytosine-5)-methyltransferase early after drug administration. The absence of tRNA (cytosine-5)-methyltransferase activity resulted in the synthesis of tRNA specifically deficient in 5-methylcytosine. Here, we show that treatment of L1210 cells, grown intraperitoneally in mice, with 5-azacytidine led to a rapid and prolonged inactivation of DNA (cytosine-5)-methyltransferase activity and to the synthesis of undermethylated DNA. DNA isolated from the treated tissue was found to inactivate the DNA methylase (decreased V(max)) in in vitro DNA (cytosine-5)-methyltransferase assays. Kinetic analysis showed noncompetitive inhibition of the substrate by the inhibitor. The persistence of DNA undermethylation after treatment with 5-azadeoxycytidine or 5-azacytidine in animals has not been measured directly; therefore, we have investigated this phenomenon in the intact animal. Prolonged treatment with 5-azacytidine was required to maintain a fraction of undermethylated sites in DNA of L1210 cells in vivo for up to 4 months or longer after drug withdrawal. Such treatment led to instability of DNA methylation levels in L1210 cells in vivo. At least a partial restoration of DNA 5-methylcytosine levels was observed after acute and chronic 5-azacytidine treatment, respectively. 5-Azacytidine was also found to induce DNA hypomethylation in regenerating, but not in normal adult mouse liver cells. Our results show that: 1) it was extremely difficult to decrease the DNA methylation level to <50% of control; and 2) it was also difficult to maintain stable DNA methylation levels in vivo after exposure to the drug.

UR - http://www.scopus.com/inward/record.url?scp=0021709679&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021709679&partnerID=8YFLogxK

M3 - Article

VL - 26

SP - 594

EP - 603

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 3

ER -