Abstract
Background - Epidemiologic studies and transgenic mouse experiments indicate that high plasma HDL and apolipoprotein (apo) A-I protect against atherosclerosis. We used helper-dependent adenovirus (HD-Ad) gene transfer to examine the effect of long-term hepatic apoA-I expression on atherosclerotic lesion progression and remodeling in a mouse model of familial hypercholesterolemia. Methods and Results - We treated LDL receptor-deficient (LDLR-/-) mice maintained on a high-cholesterol diet for 6 weeks with either a HD-Ad containing human apoA-I gene (HD-Ad-AI) or saline (control). HD-Ad-AI treatment did not affect plasma liver enzymes but induced the appearance of plasma human apoA-I at or above human levels for the duration of the study. Substantial amounts of human apoA-I existed in lipid-free plasma. Compared with controls, HDLs from treated mice were larger and had a greater inhibitory effect on tumor necrosis factor-α-induced vascular cellular adhesion molecule-1 expression in cultured endothelial cells. Twenty-four weeks after injection, aortic atherosclerotic lesion area in saline-treated mice progressed ≈700%; the rate of progression was reduced by >50% by HD-Ad-AI treatment. The lesions in HD-Ad-AI-treated mice contained human apoA-I that colocalized mainly with macrophages; they also contained less lipid, fewer macrophages, and less vascular cellular adhesion molecule-1 immunostaining but more smooth muscle cells (α-actin staining) and collagen. Conclusions - HD-Ad-AI treatment of LDLR-/- mice leads to long-term overexpression of apoA-I, retards atherosclerosis progression, and remodels the lesions to a more stable-appearing phenotype. HD-Ad-mediated transfer of apoA-I may be a useful clinical approach for protecting against atherosclerosis progression and stabilizing atherosclerotic lesions associated with dyslipidemia in human patients.
Original language | English (US) |
---|---|
Pages (from-to) | 2726-2732 |
Number of pages | 7 |
Journal | Circulation |
Volume | 107 |
Issue number | 21 |
DOIs | |
State | Published - Jun 3 2003 |
Keywords
- Adenovirus
- Apolipoproteins
- Atherosclerosis
- Gene therapy
- Hypercholesterolemia
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine
- Physiology (medical)