Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype

Kevin Roarty, Sarah Baxley, Michael R. Crowley, Andra R. Frost, Rosa Serra

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Introduction: The tumour-suppressive effects of transforming growth factor-beta (TGF-β) are well documented; however, the mechanistic basis of these effects is not fully understood. Previously, we showed that a non-canonical member of the Wingless-related protein family, Wnt5a, is required for TGF-β-mediated effects on mammary development. Several lines of evidence support the hypothesis that Wnt5a acts as a tumour suppressor. In addition, it has been shown that Wnt5a can antagonise canonical Wnt/β-catenin signalling in various cell types. Here we test the hypothesis that TGF-β and Wnt5a can antagonise Wnt/β-catenin signalling and redirect mammary tumour phenotype. The results provide a new mechanism for the tumour-suppressive effects of TGF-β.Methods: Wnt/β-catenin signalling was measured in tumours with altered TGF-β (dominant-negative TGF-β type II receptor, DNIIR) or Wnt5a (Wnt5a-/-) signalling as the accumulation of nuclear β-catenin using both confocal microscopy and cell fractionation. RT-PCR was used to measure the expression of Wnt/β-catenin target genes. Sca1 expression was determined by western blot and keratin (K) 6- and K14-positive populations were determined by immunohistochemistry.Results: Loss of TGF-β or Wnt5a signalling resulted in stabilisation of nuclear β-catenin and expression of Wnt/β-catenin target genes suggesting that TGF-β and Wnt5a act to inhibit Wnt/β-catenin signalling in mammary epithelium. Increased expression of Sca-1 was observed in developing DNIIR and Wnt5a-/- mammary glands. DNIIR and Wnt5a-/- tumours demonstrated an expanded population of K6- and K14-expressing cells typically seen in Wnt/β-catenin-induced tumours.Conclusions: The key findings here are that: TGF-β and Wnt5a regulate Wnt/β-catenin activity; and loss of TGF-β and Wnt5a redirect the phenotype of tumours so that they resemble tumours induced by activation of Wnt/β-catenin. The findings suggest a new mechanism for the tumour-suppressive effects of TGF-β.

Original languageEnglish (US)
Article numberR19
JournalBreast Cancer Research
Volume11
Issue number2
DOIs
StatePublished - Apr 3 2009
Externally publishedYes

Fingerprint

Catenins
Transforming Growth Factor beta
Breast Neoplasms
Phenotype
Neoplasms
Breast
Keratin-6
Cell Fractionation
Human Mammary Glands
Confocal Microscopy
Population
Genes
Epithelium
Western Blotting
Immunohistochemistry

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype. / Roarty, Kevin; Baxley, Sarah; Crowley, Michael R.; Frost, Andra R.; Serra, Rosa.

In: Breast Cancer Research, Vol. 11, No. 2, R19, 03.04.2009.

Research output: Contribution to journalArticle

Roarty, Kevin ; Baxley, Sarah ; Crowley, Michael R. ; Frost, Andra R. ; Serra, Rosa. / Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype. In: Breast Cancer Research. 2009 ; Vol. 11, No. 2.
@article{5c7ff2e764b34d04a51d3bd918d3913f,
title = "Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype",
abstract = "Introduction: The tumour-suppressive effects of transforming growth factor-beta (TGF-β) are well documented; however, the mechanistic basis of these effects is not fully understood. Previously, we showed that a non-canonical member of the Wingless-related protein family, Wnt5a, is required for TGF-β-mediated effects on mammary development. Several lines of evidence support the hypothesis that Wnt5a acts as a tumour suppressor. In addition, it has been shown that Wnt5a can antagonise canonical Wnt/β-catenin signalling in various cell types. Here we test the hypothesis that TGF-β and Wnt5a can antagonise Wnt/β-catenin signalling and redirect mammary tumour phenotype. The results provide a new mechanism for the tumour-suppressive effects of TGF-β.Methods: Wnt/β-catenin signalling was measured in tumours with altered TGF-β (dominant-negative TGF-β type II receptor, DNIIR) or Wnt5a (Wnt5a-/-) signalling as the accumulation of nuclear β-catenin using both confocal microscopy and cell fractionation. RT-PCR was used to measure the expression of Wnt/β-catenin target genes. Sca1 expression was determined by western blot and keratin (K) 6- and K14-positive populations were determined by immunohistochemistry.Results: Loss of TGF-β or Wnt5a signalling resulted in stabilisation of nuclear β-catenin and expression of Wnt/β-catenin target genes suggesting that TGF-β and Wnt5a act to inhibit Wnt/β-catenin signalling in mammary epithelium. Increased expression of Sca-1 was observed in developing DNIIR and Wnt5a-/- mammary glands. DNIIR and Wnt5a-/- tumours demonstrated an expanded population of K6- and K14-expressing cells typically seen in Wnt/β-catenin-induced tumours.Conclusions: The key findings here are that: TGF-β and Wnt5a regulate Wnt/β-catenin activity; and loss of TGF-β and Wnt5a redirect the phenotype of tumours so that they resemble tumours induced by activation of Wnt/β-catenin. The findings suggest a new mechanism for the tumour-suppressive effects of TGF-β.",
author = "Kevin Roarty and Sarah Baxley and Crowley, {Michael R.} and Frost, {Andra R.} and Rosa Serra",
year = "2009",
month = "4",
day = "3",
doi = "10.1186/bcr2244",
language = "English (US)",
volume = "11",
journal = "Breast Cancer Research",
issn = "1465-5411",
publisher = "BioMed Central",
number = "2",

}

TY - JOUR

T1 - Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype

AU - Roarty, Kevin

AU - Baxley, Sarah

AU - Crowley, Michael R.

AU - Frost, Andra R.

AU - Serra, Rosa

PY - 2009/4/3

Y1 - 2009/4/3

N2 - Introduction: The tumour-suppressive effects of transforming growth factor-beta (TGF-β) are well documented; however, the mechanistic basis of these effects is not fully understood. Previously, we showed that a non-canonical member of the Wingless-related protein family, Wnt5a, is required for TGF-β-mediated effects on mammary development. Several lines of evidence support the hypothesis that Wnt5a acts as a tumour suppressor. In addition, it has been shown that Wnt5a can antagonise canonical Wnt/β-catenin signalling in various cell types. Here we test the hypothesis that TGF-β and Wnt5a can antagonise Wnt/β-catenin signalling and redirect mammary tumour phenotype. The results provide a new mechanism for the tumour-suppressive effects of TGF-β.Methods: Wnt/β-catenin signalling was measured in tumours with altered TGF-β (dominant-negative TGF-β type II receptor, DNIIR) or Wnt5a (Wnt5a-/-) signalling as the accumulation of nuclear β-catenin using both confocal microscopy and cell fractionation. RT-PCR was used to measure the expression of Wnt/β-catenin target genes. Sca1 expression was determined by western blot and keratin (K) 6- and K14-positive populations were determined by immunohistochemistry.Results: Loss of TGF-β or Wnt5a signalling resulted in stabilisation of nuclear β-catenin and expression of Wnt/β-catenin target genes suggesting that TGF-β and Wnt5a act to inhibit Wnt/β-catenin signalling in mammary epithelium. Increased expression of Sca-1 was observed in developing DNIIR and Wnt5a-/- mammary glands. DNIIR and Wnt5a-/- tumours demonstrated an expanded population of K6- and K14-expressing cells typically seen in Wnt/β-catenin-induced tumours.Conclusions: The key findings here are that: TGF-β and Wnt5a regulate Wnt/β-catenin activity; and loss of TGF-β and Wnt5a redirect the phenotype of tumours so that they resemble tumours induced by activation of Wnt/β-catenin. The findings suggest a new mechanism for the tumour-suppressive effects of TGF-β.

AB - Introduction: The tumour-suppressive effects of transforming growth factor-beta (TGF-β) are well documented; however, the mechanistic basis of these effects is not fully understood. Previously, we showed that a non-canonical member of the Wingless-related protein family, Wnt5a, is required for TGF-β-mediated effects on mammary development. Several lines of evidence support the hypothesis that Wnt5a acts as a tumour suppressor. In addition, it has been shown that Wnt5a can antagonise canonical Wnt/β-catenin signalling in various cell types. Here we test the hypothesis that TGF-β and Wnt5a can antagonise Wnt/β-catenin signalling and redirect mammary tumour phenotype. The results provide a new mechanism for the tumour-suppressive effects of TGF-β.Methods: Wnt/β-catenin signalling was measured in tumours with altered TGF-β (dominant-negative TGF-β type II receptor, DNIIR) or Wnt5a (Wnt5a-/-) signalling as the accumulation of nuclear β-catenin using both confocal microscopy and cell fractionation. RT-PCR was used to measure the expression of Wnt/β-catenin target genes. Sca1 expression was determined by western blot and keratin (K) 6- and K14-positive populations were determined by immunohistochemistry.Results: Loss of TGF-β or Wnt5a signalling resulted in stabilisation of nuclear β-catenin and expression of Wnt/β-catenin target genes suggesting that TGF-β and Wnt5a act to inhibit Wnt/β-catenin signalling in mammary epithelium. Increased expression of Sca-1 was observed in developing DNIIR and Wnt5a-/- mammary glands. DNIIR and Wnt5a-/- tumours demonstrated an expanded population of K6- and K14-expressing cells typically seen in Wnt/β-catenin-induced tumours.Conclusions: The key findings here are that: TGF-β and Wnt5a regulate Wnt/β-catenin activity; and loss of TGF-β and Wnt5a redirect the phenotype of tumours so that they resemble tumours induced by activation of Wnt/β-catenin. The findings suggest a new mechanism for the tumour-suppressive effects of TGF-β.

UR - http://www.scopus.com/inward/record.url?scp=68349123821&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68349123821&partnerID=8YFLogxK

U2 - 10.1186/bcr2244

DO - 10.1186/bcr2244

M3 - Article

C2 - 19344510

AN - SCOPUS:68349123821

VL - 11

JO - Breast Cancer Research

JF - Breast Cancer Research

SN - 1465-5411

IS - 2

M1 - R19

ER -