Luminal influences on potassium secretion

sodium concentration and fluid flow rate.

David Good, F. S. Wright

Research output: Contribution to journalArticle

161 Citations (Scopus)

Abstract

Two methods of in vivo continuous microperfusion were used to evaluate separately luminal sodium concentration and fluid flow rate as factors regulating potassium secretion by the renal distal tubule of the rat. Emphasis was placed on evaluating changes in sodium concentration (43-97 mM) and flow rate (4-27 nl/min) within the physiological range. Absolute rates of Na, K, Cl, and H2O transport were measured. Results showed that increasing early distal flow rate without increasing early distal Na concentration significantly increased the absolute rate of potassium secretion by the distal tubule. In contrast, increasing early distal Na concentration, distal Na delivery, and distal Na absorption did not affect potassium secretion if flow rate was not changed. Further studies showed that reducing early distal Na concentration below the physiological range (to 15 mM) caused the direction of net sodium transport to be reversed but did not significantly reduce potassium secretion. Increasing early distal K concentration (to 34 mM) caused the direction of net potassium transport to be reversed. The rate of potassium secretion appears to depend in part on the luminal potassium concentration. Increases in luminal flow rate may increase the rate of potassium secretion by lowering the luminal K concentration.

Original languageEnglish (US)
JournalThe American journal of physiology
Volume236
Issue number2
StatePublished - Feb 1979
Externally publishedYes

Fingerprint

Potassium
Sodium
Distal Kidney Tubule

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Luminal influences on potassium secretion : sodium concentration and fluid flow rate. / Good, David; Wright, F. S.

In: The American journal of physiology, Vol. 236, No. 2, 02.1979.

Research output: Contribution to journalArticle

@article{98b29d45d85544419e937b799fd41172,
title = "Luminal influences on potassium secretion: sodium concentration and fluid flow rate.",
abstract = "Two methods of in vivo continuous microperfusion were used to evaluate separately luminal sodium concentration and fluid flow rate as factors regulating potassium secretion by the renal distal tubule of the rat. Emphasis was placed on evaluating changes in sodium concentration (43-97 mM) and flow rate (4-27 nl/min) within the physiological range. Absolute rates of Na, K, Cl, and H2O transport were measured. Results showed that increasing early distal flow rate without increasing early distal Na concentration significantly increased the absolute rate of potassium secretion by the distal tubule. In contrast, increasing early distal Na concentration, distal Na delivery, and distal Na absorption did not affect potassium secretion if flow rate was not changed. Further studies showed that reducing early distal Na concentration below the physiological range (to 15 mM) caused the direction of net sodium transport to be reversed but did not significantly reduce potassium secretion. Increasing early distal K concentration (to 34 mM) caused the direction of net potassium transport to be reversed. The rate of potassium secretion appears to depend in part on the luminal potassium concentration. Increases in luminal flow rate may increase the rate of potassium secretion by lowering the luminal K concentration.",
author = "David Good and Wright, {F. S.}",
year = "1979",
month = "2",
language = "English (US)",
volume = "236",
journal = "American Journal of Physiology - Endocrinology and Metabolism",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Luminal influences on potassium secretion

T2 - sodium concentration and fluid flow rate.

AU - Good, David

AU - Wright, F. S.

PY - 1979/2

Y1 - 1979/2

N2 - Two methods of in vivo continuous microperfusion were used to evaluate separately luminal sodium concentration and fluid flow rate as factors regulating potassium secretion by the renal distal tubule of the rat. Emphasis was placed on evaluating changes in sodium concentration (43-97 mM) and flow rate (4-27 nl/min) within the physiological range. Absolute rates of Na, K, Cl, and H2O transport were measured. Results showed that increasing early distal flow rate without increasing early distal Na concentration significantly increased the absolute rate of potassium secretion by the distal tubule. In contrast, increasing early distal Na concentration, distal Na delivery, and distal Na absorption did not affect potassium secretion if flow rate was not changed. Further studies showed that reducing early distal Na concentration below the physiological range (to 15 mM) caused the direction of net sodium transport to be reversed but did not significantly reduce potassium secretion. Increasing early distal K concentration (to 34 mM) caused the direction of net potassium transport to be reversed. The rate of potassium secretion appears to depend in part on the luminal potassium concentration. Increases in luminal flow rate may increase the rate of potassium secretion by lowering the luminal K concentration.

AB - Two methods of in vivo continuous microperfusion were used to evaluate separately luminal sodium concentration and fluid flow rate as factors regulating potassium secretion by the renal distal tubule of the rat. Emphasis was placed on evaluating changes in sodium concentration (43-97 mM) and flow rate (4-27 nl/min) within the physiological range. Absolute rates of Na, K, Cl, and H2O transport were measured. Results showed that increasing early distal flow rate without increasing early distal Na concentration significantly increased the absolute rate of potassium secretion by the distal tubule. In contrast, increasing early distal Na concentration, distal Na delivery, and distal Na absorption did not affect potassium secretion if flow rate was not changed. Further studies showed that reducing early distal Na concentration below the physiological range (to 15 mM) caused the direction of net sodium transport to be reversed but did not significantly reduce potassium secretion. Increasing early distal K concentration (to 34 mM) caused the direction of net potassium transport to be reversed. The rate of potassium secretion appears to depend in part on the luminal potassium concentration. Increases in luminal flow rate may increase the rate of potassium secretion by lowering the luminal K concentration.

UR - http://www.scopus.com/inward/record.url?scp=0018432412&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0018432412&partnerID=8YFLogxK

M3 - Article

VL - 236

JO - American Journal of Physiology - Endocrinology and Metabolism

JF - American Journal of Physiology - Endocrinology and Metabolism

SN - 0193-1849

IS - 2

ER -