Lung perfusion and ventilation during cardiopulmonary bypass reduces early structural damage to pulmonary parenchyma

Claudia Regina Da Costa Freitas, Luiz Marcelo Sa Malbouisson, Anderson Benicio, Elnara Marcia Negri, Filipe Minussi Bini, Cristina Oliveira Massoco, Denise Aya Otsuki, Marcos Francisco Vidal Melo, Maria Jose Carvalho Carmona

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

BACKGROUND: It is unclear whether maintaining pulmonary perfusion and ventilation during cardiopulmonary bypass (CPB) reduces pulmonary inflammatory tissue injury compared with standard CPB where the lungs are not ventilated and are minimally perfused. In this study, we tested the hypothesis that maintenance of lung perfusion and ventilation during CPB decreases regional lung inflammation, which may result in less pulmonary structural damage. METHODS: Twenty-seven pigs were randomly allocated into a control group only submitted to sternotomy (n = 8), a standard CPB group (n = 9), or a lung perfusion group (n = 10), in which lung perfusion and ventilation were maintained during CPB. Hemodynamics, gas exchanges, respiratory mechanics, and systemic interleukins (ILs) were determined at baseline (T0), at the end of 90 minutes of CPB (T90), and 180 minutes after CPB (T180). Bronchoalveolar lavage (BAL) ILs were obtained at T0 and T180. Dorsal and ventral left lung tissue samples were examined for optical and electron microscopy. RESULTS: At T90, there was a transient reduction in Pao2/Fio2 in CPB (126 ± 64 mm Hg) compared with the control and lung perfusion groups (296 ± 46 and 244 ± 57 mm Hg; P < 0.001), returning to baseline at T180. Serum ILs were not different among the groups throughout the study, whereas there were significant increases in BAL IL-6 (P < 0.001), IL-8 (P < 0.001), and IL-10 (P < 0.001) in both CPB and lung perfusion groups compared with the control group. Polymorphonuclear counts within the lung tissue were smaller in the lung perfusion group than in the CPB group (P = 0.006). Electron microscopy demonstrated extrusion of surfactant vesicles into the alveolar spaces and thickening of the alveolar septa in the CPB group, whereas alveolar and capillary histoarchitecture was better preserved in the lung perfusion group. CONCLUSIONS: Maintenance of lung perfusion and ventilation during CPB attenuated early histologic signs of pulmonary inflammation and injury compared with standard CPB. Although increased compared with control animals, there were no differences in serum or BAL IL in animals receiving lung ventilation and perfusion during CPB compared with standard CPB.

Original languageEnglish (US)
Pages (from-to)943-952
Number of pages10
JournalAnesthesia and analgesia
Volume122
Issue number4
DOIs
StatePublished - Apr 1 2016
Externally publishedYes

ASJC Scopus subject areas

  • Anesthesiology and Pain Medicine

Fingerprint

Dive into the research topics of 'Lung perfusion and ventilation during cardiopulmonary bypass reduces early structural damage to pulmonary parenchyma'. Together they form a unique fingerprint.

Cite this