TY - JOUR
T1 - Machine learning-based prognostic subgrouping of glioblastoma
T2 - A multicenter study
AU - for the ReSPOND consortium
AU - Akbari, Hamed
AU - Bakas, Spyridon
AU - Sako, Chiharu
AU - Kazerooni, Anahita Fathi
AU - Villanueva-Meyer, Javier
AU - Garcia, Jose A.
AU - Mamourian, Elizabeth
AU - Liu, Fang
AU - Cao, Quy
AU - Shinohara, Russell T.
AU - Baid, Ujjwal
AU - Getka, Alexander
AU - Pati, Sarthak
AU - Singh, Ashish
AU - Calabrese, Evan
AU - Chang, Susan
AU - Rudie, Jeffrey
AU - Sotiras, Aristeidis
AU - LaMontagne, Pamela
AU - Marcus, Daniel S.
AU - Milchenko, Mikhail
AU - Nazeri, Arash
AU - Balana, Carmen
AU - Capellades, Jaume
AU - Puig, Josep
AU - Badve, Chaitra
AU - Barnholtz-Sloan, Jill S.
AU - Sloan, Andrew E.
AU - Vadmal, Vachan
AU - Waite, Kristin
AU - Murat, A.
AU - Colen, Rivka R.
AU - Park, Yae Won
AU - Ahn, Sung Soo
AU - Chang, Jong Hee
AU - Choi, Yoon Seong
AU - Lee, Seung Koo
AU - Alexander, Gregory S.
AU - Ali, Ayesha S.
AU - Dicker, Adam P.
AU - Flanders, Adam E.
AU - Liem, Spencer
AU - Lombardo, Joseph
AU - Shi, Wenyin
AU - Shukla, Gaurav
AU - Griffith, Brent
AU - Poisson, Laila M.
AU - Rogers, Lisa R.
AU - Kotrotsou, Aikaterini
AU - Valdes, Pablo
N1 - Publisher Copyright:
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved.
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Background. Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. Methods. We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan–Meier analysis (Cox proportional model and hazard ratios [HR]). Results. The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I–II and I–III of 1.62 (95% CI: 1.43–1.84, P < .001) and 3.48 (95% CI: 2.94–4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. Conclusions. Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols.This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.
AB - Background. Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. Methods. We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan–Meier analysis (Cox proportional model and hazard ratios [HR]). Results. The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I–II and I–III of 1.62 (95% CI: 1.43–1.84, P < .001) and 3.48 (95% CI: 2.94–4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. Conclusions. Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols.This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.
KW - glioblastoma
KW - machine learning
KW - mpMRI
KW - prognostic subgrouping
KW - survival
UR - http://www.scopus.com/inward/record.url?scp=105005266476&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105005266476&partnerID=8YFLogxK
U2 - 10.1093/neuonc/noae260
DO - 10.1093/neuonc/noae260
M3 - Article
C2 - 39665363
AN - SCOPUS:105005266476
SN - 1522-8517
VL - 27
SP - 1102
EP - 1115
JO - Neuro-Oncology
JF - Neuro-Oncology
IS - 4
ER -