Abstract
Manganese superoxide dismutase (MnSOD) expression has been found to be low in human pancreatic ductal adenocarcinoma (PDAC). Previously, we have reported that microRNA-301a (miR-301a) was found being upregulated via nuclear factor-κB (NF-κB) feedback loop in human PDAC. In this study, we investigate whether the miR-301a expression level is associated with MnSOD expression in human PDAC. We established a xenograft PDAC mouse model using transfected PanC-1 cells (miR-301a antisense or scrambled control) to investigate tumor growth and the interaction between MnSOD and miR-301a. The animal study indicated that miR-301a antisense transfection could significantly decrease the growth rate of inoculated PDAC cells, and this decrease in tumor growth rate is associated with increased MnSOD expression. To evaluate the MnSOD-miR-301a correlation in human PDAC, we have analyzed a total of 60 PDAC specimens, along with 20 normal pancreatic tissue (NPT) specimens. Human specimens confirmed a significant decrease of MnSOD expression in PDAC specimens (0.88±0.38) compared with NPT control (2.45±0.76; P<0.05), whereas there was a significant increase in miR-301a levels in PDAC specimens (0.89±0.28) compared with NPT control (0.25±0.41; P<0.05). We conclude that MnSOD expression is negatively associated with miR-301a levels in PDAC tissues, and lower miR-301a levels are associated with increased MnSOD expression and inhibition of PDAC growth.
Original language | English (US) |
---|---|
Pages (from-to) | 481-486 |
Number of pages | 6 |
Journal | Cancer gene therapy |
Volume | 22 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Cancer Research