TY - JOUR
T1 - Manipulation of human primary endothelial cell and osteoblast coculture ratios to augment vasculogenesis and mineralization
AU - Shah, Amita R.
AU - Wenke, Joseph C.
AU - Agrawal, Chandra Mauli
N1 - Publisher Copyright:
© 2014 Wolters Kluwer Health, Inc.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Tissue-engineering scaffolds are often seeded with a single type of cell, but there has been more focus on cocultures to improve angiogenesis and bone formation for craniofacial applications. Investigation of bone-derived osteoblasts (OBs) is important because of the use of bone grafts and migration of OBs from native bone into constructs in vivo and therefore, their contribution to bone formation in vivo. The limitation of primary OBs has been their inability to mineralize without osteogenic factors in vitro. Through coculture of OBs and endothelial cells (ECs) and manipulation of the coculture ratio, mineralization can be achieved without osteogenic media or additional growth factors, thus enhancing their utility for tissue-engineering applications. An optimal ratio of EC/OB for vasculogenesis and mineralization has not been determined for human primary cells. Human umbilical vein ECs were cultured with normal human primary OBs in different EC/OB ratios, namely, 10:1, 5:1, 1:1, 1:5, and 1:10 with EC and OB monocultures as controls. The number of vasculogenic networks in a collagen matrix was highest in ratios of 5:1 and 1:1. ECs lined up and formed capillary-like networks by day 10, which was not seen in the other groups. On polystyrene, cells were cocultured with ECs and OBs in direct contact (direct coculture) or separated by a transwell membrane (indirect coculture). At day 21, Alizarin Red staining showed mineralization on the 1:5 and 1:10 direct coculture ratios, with 1:5 having more mineralization nodules present than 1:10. No mineralization was seen in other direct coculture ratios or in any of the indirect coculture ratios. Alkaline phosphatase secretion was highest in the 1:5 direct coculture group. Vascular endothelial growth factor secretion from OBs was present in the 1:5 and 1:10 direct coculture ratios at all time points and inhibited after day 1 in other coculture groups. To improve vasculogenesis, cocultures of primary human ECs and OBs in ratios of 5:1 should be used, but to improve bone formation, the 1:5 direct coculture ratio results in most mineralization.
AB - Tissue-engineering scaffolds are often seeded with a single type of cell, but there has been more focus on cocultures to improve angiogenesis and bone formation for craniofacial applications. Investigation of bone-derived osteoblasts (OBs) is important because of the use of bone grafts and migration of OBs from native bone into constructs in vivo and therefore, their contribution to bone formation in vivo. The limitation of primary OBs has been their inability to mineralize without osteogenic factors in vitro. Through coculture of OBs and endothelial cells (ECs) and manipulation of the coculture ratio, mineralization can be achieved without osteogenic media or additional growth factors, thus enhancing their utility for tissue-engineering applications. An optimal ratio of EC/OB for vasculogenesis and mineralization has not been determined for human primary cells. Human umbilical vein ECs were cultured with normal human primary OBs in different EC/OB ratios, namely, 10:1, 5:1, 1:1, 1:5, and 1:10 with EC and OB monocultures as controls. The number of vasculogenic networks in a collagen matrix was highest in ratios of 5:1 and 1:1. ECs lined up and formed capillary-like networks by day 10, which was not seen in the other groups. On polystyrene, cells were cocultured with ECs and OBs in direct contact (direct coculture) or separated by a transwell membrane (indirect coculture). At day 21, Alizarin Red staining showed mineralization on the 1:5 and 1:10 direct coculture ratios, with 1:5 having more mineralization nodules present than 1:10. No mineralization was seen in other direct coculture ratios or in any of the indirect coculture ratios. Alkaline phosphatase secretion was highest in the 1:5 direct coculture group. Vascular endothelial growth factor secretion from OBs was present in the 1:5 and 1:10 direct coculture ratios at all time points and inhibited after day 1 in other coculture groups. To improve vasculogenesis, cocultures of primary human ECs and OBs in ratios of 5:1 should be used, but to improve bone formation, the 1:5 direct coculture ratio results in most mineralization.
KW - bone regeneration
KW - coculture
KW - endothelial cells
KW - human primary cells
KW - osteoblast
KW - vasculogenesis
UR - http://www.scopus.com/inward/record.url?scp=85028244333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028244333&partnerID=8YFLogxK
U2 - 10.1097/SAP.0000000000000318
DO - 10.1097/SAP.0000000000000318
M3 - Article
C2 - 25144419
AN - SCOPUS:85028244333
SN - 0148-7043
VL - 77
SP - 122
EP - 128
JO - Annals of plastic surgery
JF - Annals of plastic surgery
IS - 1
ER -