TY - JOUR
T1 - Mechanosensitive ion channel Piezo1 modulates the response of rat hippocampus neural stem cells to rapid stretch injury
AU - Mocciaro, Emanuele
AU - Kidd, Madison
AU - Johnson, Kevin
AU - Bishop, Elizabeth
AU - Johnson, Kathia
AU - Zeng, Ya Ping
AU - Perrotta, Cristiana
AU - Micci, Maria Adelaide
N1 - Publisher Copyright:
© 2025 Mocciaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2025/5
Y1 - 2025/5
N2 - Traumatic brain injury (TBI) is one of the primary causes of long-term brain disabilities among military personnel and civilians, regardless of gender. A plethora of secondary events are triggered by a primary brain insult, increasing the complexity of TBI. One of the most affected brain regions is the hippocampus, where neurogenesis occurs throughout life due to the presence of neural stem cells (NSC). Preclinical models have been extensively used to better understand TBI and develop effective treatments. Among these, rapid stretch injury has been used to mimic the effect of mechanical stress produced by a TBI on neurons and glia in vitro. In this study, we aimed to determine the impact of rapid stretch on the viability, proliferation, and differentiation of NSC isolated from rat hippocampus (Hipp-NSC) and to determine the role of the stretch-activated ion channel Piezo-1 in modulating their response to mechanical stress. We found that while rapid stretch (30 and 50 PSI) reduced Hipp-NSC viability (measured as a function of LDH release), it did not change their proliferation and differentiation potentials. Interestingly, rapid stretch in the presence of a selective Piezo-1 inhibitor, GsMTx4, or Piezo1 targeting siRNA, directed Hipp-NSC differentiation toward a neurogenic lineage. Additionally, we found that inhibiting Piezo1 with the addition of a rapid stretch injury increased the expression of miRNAs known to regulate neurogenesis. This work uses a novel approach for studying the effect of mechanical stress on NSC in vitro and points to the critical role the stretch-activated ion channel Piezo-1 has in modulating the impact of TBI on hippocampal neurogenesis.
AB - Traumatic brain injury (TBI) is one of the primary causes of long-term brain disabilities among military personnel and civilians, regardless of gender. A plethora of secondary events are triggered by a primary brain insult, increasing the complexity of TBI. One of the most affected brain regions is the hippocampus, where neurogenesis occurs throughout life due to the presence of neural stem cells (NSC). Preclinical models have been extensively used to better understand TBI and develop effective treatments. Among these, rapid stretch injury has been used to mimic the effect of mechanical stress produced by a TBI on neurons and glia in vitro. In this study, we aimed to determine the impact of rapid stretch on the viability, proliferation, and differentiation of NSC isolated from rat hippocampus (Hipp-NSC) and to determine the role of the stretch-activated ion channel Piezo-1 in modulating their response to mechanical stress. We found that while rapid stretch (30 and 50 PSI) reduced Hipp-NSC viability (measured as a function of LDH release), it did not change their proliferation and differentiation potentials. Interestingly, rapid stretch in the presence of a selective Piezo-1 inhibitor, GsMTx4, or Piezo1 targeting siRNA, directed Hipp-NSC differentiation toward a neurogenic lineage. Additionally, we found that inhibiting Piezo1 with the addition of a rapid stretch injury increased the expression of miRNAs known to regulate neurogenesis. This work uses a novel approach for studying the effect of mechanical stress on NSC in vitro and points to the critical role the stretch-activated ion channel Piezo-1 has in modulating the impact of TBI on hippocampal neurogenesis.
UR - http://www.scopus.com/inward/record.url?scp=105005441811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105005441811&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0323191
DO - 10.1371/journal.pone.0323191
M3 - Article
C2 - 40359437
AN - SCOPUS:105005441811
SN - 1932-6203
VL - 20
JO - PloS one
JF - PloS one
IS - 5 May
M1 - e0323191
ER -