Microcatheter delivery of neurotherapeutics: Compatibility with mesenchymal stem cells

Visish M. Srinivasan, Joy Gumin, Kevin M. Camstra, Stephen R. Chen, Jeremiah N. Johnson, Yuzaburo Shimizu, Brittany C. Parker Kerrigan, Elizabeth J. Shpall, Frederick F. Lang, Peter Kan

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


OBJECTIVE Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have been used in clinical trials for the treatment of several neurological disorders. MSCs have been explored as a delivery modality for targeted viral therapeutic agents in the treatment of intracranial pathologies. Delta-24-RGD, a tumor-selective oncolytic adenovirus designed to target malignant glioma cells, has been shown to be effective in animal models and in a recent clinical trial. However, the most efficient strategy for delivering oncolytic therapies remains unclear. BM-hMSCs have been shown to home toward glioma xenografts after intracarotid delivery. The feasibility of selective intraarterial infusion of BM-hMSCs loaded with Delta-24-RGD (BM-hMSC-Delta-24) to deliver the virus to the tumor is being investigated. To evaluate the feasibility of endovascular intraarterial delivery, the authors tested in vitro the compatibility of BM-hMSC-Delta-24 with a variety of commercially available, clinically common microcatheters. METHODS BM-hMSCs were cultured, transfected with Delta-24-RGD, and resuspended in 1% human serum albumin. The solution was then injected via 4 common neuroendovascular microcatheters of different inner diameters (Marathon, Echelon-14, Marksman, and SL-10). Cell count and viability after injection through the microcatheters were assessed, including tests of injection velocity and catheter configuration. Transwell assays were performed with the injected cells to test the efficacy of BM-hMSC-Delta-24 activity against U87 glioma cells. BM-hMSC-Delta-24 compatibility was also tested with common neuroendovascular medications: Omnipaque, verapamil, and heparin. RESULTS The preinfusion BM-hMSC-Delta-24 cell count was 1.2 × 105 cells/ml, with 98.7% viability. There was no significant difference in postinfusion cell count or viability for any of the catheters. Increasing the injection velocity from 1.0 ml/min to 73.2 ml/min, or modifying the catheter shape from straight to tortuous, did not significantly reduce cell count or viability. Cell count and viability remained stable for up to 5 hours when the cell solution was stored on ice. Mixing BM-hMSC-Delta-24 with clinical concentrations of Omnipaque, verapamil, and heparin prior to infusion did not alter cell count or viability. Transwell experiments demonstrated that the antiglioma activity of BM-hMSC-Delta-24 was maintained after infusion. CONCLUSIONS BM-hMSC-Delta-24 is compatible with a wide variety of microcatheters and medications commonly used in neuroendovascular therapy. Stem cell viability and viral agent activity do not appear to be affected by catheter configuration or injection velocity. Commercially available microcatheters can be used to deliver stem cell neurotherapeutics via intraarterial routes.

Original languageEnglish (US)
Pages (from-to)1182-1190
Number of pages9
JournalJournal of neurosurgery
Issue number4
StatePublished - Oct 2020
Externally publishedYes


  • Endovascular
  • Mesenchymal
  • Microcatheter
  • Neurotherapeutics
  • Stem cells
  • Surgical technique

ASJC Scopus subject areas

  • Surgery
  • Clinical Neurology


Dive into the research topics of 'Microcatheter delivery of neurotherapeutics: Compatibility with mesenchymal stem cells'. Together they form a unique fingerprint.

Cite this